Differential Equations I for Students of Engineering Sciences

 Sheet 6, Homework

 Sheet 6, Homework}

Exercise 1:

Consider the following system of differential equations

$$
\boldsymbol{u}^{\prime}(t)=\left(\begin{array}{cc}
-3 & 2 \\
-8 & -3
\end{array}\right) \boldsymbol{u}(t)+\binom{20}{20}
$$

a) Determine a real fundamental system of the corresponding homogeneous system of differential equations .
b) With the help of an appropriate ansatz determine a particular solution of the inhomogeneous system and provide the general solution of the inhomogeneous differential equation.

Sketch of solution:

a)

$$
\operatorname{det}\left(\begin{array}{rr}
-3-\lambda & 2 \\
-8 & -3-\lambda
\end{array}\right)=(-3-\lambda)^{2}+16 .
$$

The eigenvalues of the system matrix are found as follows

$$
(-3-\lambda)^{2}=-16 \Longleftrightarrow-3-\lambda= \pm 4 i \Longrightarrow \lambda_{1,2}=-3 \pm 4 i .
$$

An eigenvector for $\lambda_{1}=-3-4 i$ is obtained as solution of the system of equations

$$
\left(\begin{array}{cc}
4 i & 2 \\
-8 & 4 i
\end{array}\right) \cdot\binom{z_{1}}{z_{2}}=\binom{0}{0} .
$$

Any vector with $z_{2}=-2 i z_{1}$ satisfies the system. We may choose for example $(1,-2 i)^{T}$. The complex conjugate vector is an eigenvector for $\lambda_{2}=-3+4 i$.
From this we get the complex fundamental system

$$
\boldsymbol{z}^{[1]}(t)=e^{(-3+4 i) t}\binom{1}{2 i}, \quad \boldsymbol{z}^{[2]}(t)=e^{(-3-4 i) t}\binom{1}{-2 i}
$$

A real fundamental system is given, for example, by $F M(t)=\left(\operatorname{Re}\left(\boldsymbol{z}^{[1]}(t)\right), \operatorname{Im}\left(\boldsymbol{z}^{[1]}(t)\right)\right)$.
Due to $\quad \boldsymbol{z}^{[1]}(t)=e^{-3 t}(\cos (4 t)+i \cdot \sin (4 t)) \cdot\binom{1}{2 i}=e^{-3 t}\binom{\cos (4 t)+i \cdot \sin (4 t)}{2 i \cos (4 t)-2 \sin (4 t)}$,
one obtains

$$
\boldsymbol{u}^{[1]}(t)=e^{-3 t}\binom{\cos (4 t)}{-2 \sin (4 t)}, \quad \boldsymbol{u}^{[2]}(t)=e^{-3 t}\binom{\sin (4 t)}{2 \cos (4 t)} .
$$

and thus the fundamental system $F M(t):=\left(\boldsymbol{u}^{[1]}(t), \boldsymbol{u}^{[2]}(t)\right)$.
Then the general solution of the homogeneous system reads

$$
\boldsymbol{u}_{h}(t)=c_{1} \boldsymbol{u}^{[1]}(t)+c_{2} \boldsymbol{u}^{[2]}(t)
$$

b) To solve the inhomogeneous system

$$
\boldsymbol{u}^{\prime}(t)=\left(\begin{array}{cc}
-3 & 2 \\
-8 & -3
\end{array}\right) \boldsymbol{u}(t)+\binom{20}{20}
$$

we make the ansatz $\boldsymbol{u}^{[p]}=\binom{a}{b}$ with constant numbers a, b and obtain

$$
\begin{gathered}
\binom{0}{0}=\left(\begin{array}{cc}
-3 & 2 \\
-8 & -3
\end{array}\right) \cdot\binom{a}{b}+\binom{20}{20} \\
\Longleftrightarrow\left\{\begin{array}{l}
-3 a+2 b=-20 \quad \Longleftrightarrow-9 a+6 b=-60 \\
-8 a-3 b=-20 \quad \Longrightarrow-16 a-6 b=-40
\end{array}\right.
\end{gathered}
$$

Adding the last equations returns $-25 a=-100$, thus $a=4$. Inserting a into any of the equations returns $b=-4$.
$\boldsymbol{u}^{[p]}(t)=\binom{4}{-4}$ is thus a particular solution of the inhomogeneous system. The general solution of the inhomogeneous system is

$$
\boldsymbol{u}(t)=\boldsymbol{u}_{h}(t)+\boldsymbol{u}^{[p]}(t)=c_{1} \boldsymbol{u}^{[1]}(t)+c_{2} \boldsymbol{u}^{[2]}(t)+\boldsymbol{u}^{[p]}(t), \quad c_{1}, c_{2} \in \mathbb{R}
$$

Exercise 2)

Consider the system of differential equations

$$
\boldsymbol{u}^{\prime}(t)=\boldsymbol{A} \cdot \boldsymbol{u}(t)=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 1 \\
0 & 0 & -2
\end{array}\right) \cdot \boldsymbol{u}(t) .
$$

a) Determine the general solution of the system.
b) Determine the solution $\boldsymbol{u}(t)$ of the corresponding initial value problem with

$$
\boldsymbol{u}(0)=\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right)
$$

and compute for this solution $\lim _{t \rightarrow \infty} \boldsymbol{u}(t)$.
c) Does the solution of the system from part a) converge to zero for $t \rightarrow \infty$ for every initial conditions? Justify your answer.

Solution:

a) Computation of the eigenvalues of \boldsymbol{A} :

$$
P(\lambda):=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 2 \\
1 & -\lambda & 1 \\
0 & 0 & -2-\lambda
\end{array}\right)=(-2-\lambda) \cdot \operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right)=(-2-\lambda) \cdot\left(\lambda^{2}-1\right)
$$

$P(\lambda)=0 \Longrightarrow \lambda_{1}=-2, \lambda_{2}=-1, \lambda_{3}=1$.

Computation of the eigenvectors:
$\lambda_{1}=-2$:
$\left(\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 1 \\ 0 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{c}2 v_{1}+v_{2}+2 v_{3} \\ v_{1}+2 v_{2}+v_{3} \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
First row $-2 \times$ second row: $-3 v_{2}=0$.
Inserting $v_{2}=0$ into the first or second row: $v_{3}=-v_{1}$.
For example $\boldsymbol{v}^{[1]}:=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and from this $\boldsymbol{u}^{[1]}(t)=e^{-2 t}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.
$\lambda_{2}=-1:$
$\left(\begin{array}{ccc}1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & -1\end{array}\right) \cdot\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{c}v_{1}+v_{2}+2 v_{3} \\ v_{1}+v_{2}+v_{3} \\ -v_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
Third row $v_{3}=0$.
Inserting $v_{3}=0$ into the first or second row: $v_{2}=-v_{1}$.
For example $\boldsymbol{v}^{[2]}:=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and thus $\boldsymbol{u}^{[2]}(t)=e^{-t}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
$\lambda_{3}=1:$
$\left(\begin{array}{ccc}-1 & 1 & 2 \\ 1 & -1 & 1 \\ 0 & 0 & -3\end{array}\right) \cdot\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{c}-v_{1}+v_{2}+2 v_{3} \\ v_{1}-v_{2}+v_{3} \\ -3 v_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.

Third row $v_{3}=0$.
Inserting $v_{3}=0$ into the first or second row: $v_{2}=v_{1}$.
Thus for example we can choose $v^{[3]}:=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and

$$
\boldsymbol{u}^{[3]}(t)=e^{t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

The general solution is: $\boldsymbol{u}(t)=c_{1} \boldsymbol{u}^{[1]}(t)+c_{2} \boldsymbol{u}^{[2]}(t)+c_{3} \boldsymbol{u}^{[3]}(t)$.
b)

$$
\begin{aligned}
\boldsymbol{u}(0) & =c_{1} e^{0}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+c_{2} e^{0}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+c_{3} e^{0}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \stackrel{!}{=}\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right) \\
& \Longleftrightarrow\left\{\begin{aligned}
c_{1}+c_{2}+c_{3} & =3 \\
-c_{2}+c_{3} & =-1 \\
-c_{1} & =-2 \Rightarrow c_{1}=2
\end{aligned}\right.
\end{aligned}
$$

New system: $\left\{\begin{aligned} c_{2}+c_{3} & =1 \\ -c_{2}+c_{3} & =-1 \\ c_{1} & =2\end{aligned}\right.$.
Summing up the first two rows of the system returns: $c_{3}=0$ and from this it follows $c_{2}=1$. The solution of the initial value problem is:

$$
\boldsymbol{u}(t)=2 \cdot \boldsymbol{u}^{[1]}(t)+\boldsymbol{u}^{[2]}(t)=2 e^{-2 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+e^{-t}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

$\lim _{t \rightarrow \infty} \boldsymbol{u}(t)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
c) No, the solution from a)

$$
\begin{aligned}
\boldsymbol{u}(t) & =c_{1} \cdot \boldsymbol{u}^{[1]}(t)+c_{2} \cdot \boldsymbol{u}^{[2]}(t)+c_{3} \boldsymbol{u}^{[3]}(t) \\
& =c_{1} e^{-2 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+c_{2} e^{-t}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+c_{3} e^{t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

does not converge to zero for arbitrary initial values. It converges to the zero solution if and only if the initial values are such that c_{3} vanishes!

Exercise 3:

Consider the linear differential equation of second order

$$
u^{\prime \prime}(t)+\frac{7}{t} u^{\prime}(t)+\frac{9}{t^{2}} u(t)=0
$$

a) With the help of the ansatz: $u_{0}(t)=t^{k}$, determine a solution of the differential equation.
b) With the help of te reduction ansatz $\hat{u}(t)=u_{0}(t) \cdot w(t)$ find another solution of the differential equation and provide the general solution of the differential equation.
c) Compute the solution of the boundary problem

$$
u^{\prime \prime}(t)+\frac{7}{t} u^{\prime}(t)+\frac{9}{t^{2}} u(t)=0, \quad 1<t<e^{\frac{1}{3}}, \quad u(1)=0, u\left(e^{\frac{1}{3}}\right)=1
$$

d) Can you also calculate a solution of the following boundary value problem?

$$
u^{\prime \prime}(t)+\frac{7}{t} u^{\prime}(t)+\frac{9}{t^{2}} u(t)=0, \quad 1<t<e^{\frac{1}{3}}, \quad u(1)=0, u^{\prime}\left(e^{\frac{1}{3}}\right)=1
$$

Solution:

a) The ansatz $u_{0}(t)=t^{k}$ returns for $t \neq 0$

$$
k(k-1)+7 k+9=k^{2}+6 k+9=(k+3)^{2} \stackrel{!}{=} 0
$$

We obtain just one solution $u_{0}(t)=t^{-3}$ (up to multiplication by a constant). Since the space of solutions has dimension two, we do not find a fundamental system.
b) Inserting the reduction ansatz $\hat{u}(t)=u_{0}(t) \cdot w(t)$ into the differential equation returns as in the lecture

$$
\begin{array}{rr}
& \left(u_{0} w\right)^{\prime \prime}+\frac{7}{t}\left(u_{0} w\right)^{\prime}+\frac{9}{t^{2}}\left(u_{0} w\right)=0 \\
\Rightarrow & \left(u_{0}^{\prime \prime} w+2 u_{0}^{\prime} w^{\prime}+u_{0} w^{\prime \prime}\right)+\frac{7}{t}\left(u_{0}^{\prime} w+u_{0} w^{\prime}\right)+\frac{9}{t^{2}}\left(u_{0} w\right)=0 \\
\Rightarrow & u_{0} w^{\prime \prime}+\left(2 u_{0}^{\prime}+\frac{7}{t} u_{0}\right) w^{\prime}+\underbrace{\left(u_{0}^{\prime \prime}+\frac{7}{t} u_{0}^{\prime}+\frac{9}{t^{2}} u_{0}\right)}_{=0} w=0 \\
\Rightarrow & t^{-3} w^{\prime \prime}+\left(-6 t^{-4}+\frac{7}{t} t^{-3}\right) w^{\prime}=0
\end{array} \quad y^{\prime}=-\frac{1}{t} y .
$$

This is a separable differential equation in $y(t)$

$$
\begin{gathered}
\frac{d y}{y}=-\frac{d t}{t} \Longrightarrow \ln (|y|)=-\ln (|t|)+k \Longrightarrow y(t)=\frac{c}{t}=w^{\prime}(t) \\
w(t)=c \ln (t)+\tilde{c} \quad \text { and thus for example } w(t)=\ln (t)
\end{gathered}
$$

With this w we get from our ansatz $\hat{u}(t)=w(t) u_{0}(t)=\frac{\ln (t)}{t^{3}}$.
The general solution is

$$
u(t)=c_{1} \frac{1}{t^{3}}+c_{2} \frac{\ln (t)}{t^{3}}, \quad \quad c_{1}, c_{2} \in \mathbb{R}
$$

c) The boundary values require:
$u(1)=c_{1} \frac{1}{1^{3}}+c_{2} \frac{\ln (1)}{1^{3}}=c_{1}=0 \Longrightarrow u(t)=c_{2} \frac{\ln (t)}{t^{3}}$
and
$u\left(e^{\frac{1}{3}}\right)=c_{2} \frac{\ln \left(e^{\frac{1}{3}}\right)}{\left(e^{\frac{1}{3}}\right)^{3}}=c_{2} \frac{\frac{1}{3} \ln (e)}{e^{1}}=1 \Longrightarrow c_{2}=3 e^{1}$
From this we obtain the unique solution $\quad u(t)=3 e \frac{\ln (t)}{t^{3}}$.
d) From $u(1)=0$ it follows again $c_{1}=0$ and hence $u(t)=c_{2} \frac{\ln (t)}{t^{3}}$, thus
$u^{\prime}(t)=c_{2}\left(\frac{1}{t^{4}}-3 \frac{\ln (t)}{t^{4}}\right)=\frac{c_{2}}{t^{4}}(1-3 \ln (t))$.
For every value of c_{2}, one thus obtains $u^{\prime}\left(e^{\frac{1}{3}}\right)=\frac{c_{2}}{t^{4}}\left(1-3 \cdot \frac{1}{3}\right)=0$.
The boundary condition $u^{\prime}\left(e^{\frac{1}{3}}\right)=1$ can thus not be satisfied. The boundary value problem has no solution.

Hand in until: 12.01.2024

