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Exercise 1:

Consider the following system of differential equations

u ′(t) =
(

−3 2
−8 −3

)
u (t) +

(
20
20

)
.

a) Determine a real fundamental system of the corresponding homogeneous system of differential equations .

b) With the help of an appropriate ansatz determine a particular solution of the inhomogeneous system
and provide the general solution of the inhomogeneous differential equation.

Sketch of solution:

a)

det
(

−3 − λ 2
−8 −3 − λ

)
= (−3 − λ)2 + 16.

The eigenvalues of the system matrix are found as follows

(−3 − λ)2 = −16 ⇐⇒ −3 − λ = ±4i =⇒ λ1,2 = −3 ± 4i .

An eigenvector for λ1 = −3 − 4i is obtained as solution of the system of equations(
4i 2
−8 4i

)
·
(

z1
z2

)
=

(
0
0

)
.

Any vector with z2 = −2iz1 satisfies the system. We may choose for example (1, −2i)T . The complex
conjugate vector is an eigenvector for λ2 = −3 + 4i .
From this we get the complex fundamental system

z [1](t) = e(−3+4i)t

(
1
2i

)
, z [2](t) = e(−3−4i)t

(
1

−2i

)
.

A real fundamental system is given, for example, by FM(t) = ( Re ( z [1](t)) , Im ( z [1](t)) ) .

Due to z [1](t) = e−3t(cos(4t) + i · sin(4t)) ·
(

1
2i

)
= e−3t

(
cos(4t) + i · sin(4t)

2i cos(4t) − 2 sin(4t)

)
,

one obtains

u [1](t) = e−3t

(
cos(4t)

−2 sin(4t)

)
, u [2](t) = e−3t

(
sin(4t)

2 cos(4t)

)
.

and thus the fundamental system FM(t) :=
(
u[1](t), u[2](t)

)
.

Then the general solution of the homogeneous system reads u h(t) = c1 u [1](t) + c2 u [2](t) .
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b) To solve the inhomogeneous system

u ′(t) =
(

−3 2
−8 −3

)
u (t) +

(
20
20

)

we make the ansatz u [p] =
(

a
b

)
with constant numbers a, b and obtain

(
0
0

)
=

(
−3 2
−8 −3

)
·
(

a
b

)
+

(
20
20

)

⇐⇒

{
−3a + 2b = −20 ⇐⇒ −9a + 6b = −60
−8a − 3b = −20 =⇒ −16a − 6b = −40,

Adding the last equations returns −25a = −100 , thus a = 4 .
Inserting a into any of the equations returns b = −4 .

u [p](t) =
(

4
−4

)
is thus a particular solution of the inhomogeneous system. The general solution of

the inhomogeneous system is

u (t) = u h(t) + u [p](t) = c1 u [1](t) + c2 u [2](t) + u [p](t) , c1, c2 ∈ R.
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Exercise 2)

Consider the system of differential equations

u ′(t) = A · u (t) =

0 1 2
1 0 1
0 0 −2

 · u (t).

a) Determine the general solution of the system.

b) Determine the solution u (t) of the corresponding initial value problem with

u (0) =

 3
−1
−2


and compute for this solution lim

t→∞
u (t) .

c) Does the solution of the system from part a) converge to zero for t → ∞ for every initial conditions?
Justify your answer.

Solution:

a) Computation of the eigenvalues of A :

P (λ) := det

−λ 1 2
1 −λ 1
0 0 −2 − λ

 = (−2 − λ) · det
(

−λ 1
1 −λ

)
= (−2 − λ) · (λ2 − 1).

P (λ) = 0 =⇒ λ1 = −2 , λ2 = −1, λ3 = 1 .

Computation of the eigenvectors:
λ1 = −2 :2 1 2

1 2 1
0 0 0

 ·

v1
v2
v3

 =

2v1 + v2 + 2v3
v1 + 2v2 + v3

0

 =

0
0
0

 .

First row −2× second row: −3v2 = 0 .
Inserting v2 = 0 into the first or second row: v3 = −v1 .

For example v [1] :=

 1
0

−1

 and from this u [1](t) = e−2t

 1
0

−1

 .

λ2 = −1 :1 1 2
1 1 1
0 0 −1

 ·

v1
v2
v3

 =

v1 + v2 + 2v3
v1 + v2 + v3

−v3

 =

0
0
0

 .

Third row v3 = 0 .
Inserting v3 = 0 into the first or second row: v2 = −v1 .

For example v [2] :=

 1
−1
0

 and thus u [2](t) = e−t

 1
−1
0

 .

λ3 = 1 :−1 1 2
1 −1 1
0 0 −3

 ·

v1
v2
v3

 =

−v1 + v2 + 2v3
v1 − v2 + v3

−3v3

 =

0
0
0

 .
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Third row v3 = 0 .
Inserting v3 = 0 into the first or second row: v2 = v1 .

Thus for example we can choose v [3] :=

1
1
0

 and

u [3](t) = et

1
1
0


.
The general solution is: u (t) = c1 u [1](t) + c2 u [2](t) + c3 u [3](t) .

b)

u(0) = c1 e0

 1
0

−1

 + c2 e0

 1
−1
0

 + c3 e0

1
1
0

 !=

 3
−1
−2



⇐⇒


c1 + c2 + c3 = 3

−c2 + c3 = −1
−c1 = −2 ⇒ c1 = 2

New system:


c2 + c3 = 1

−c2 + c3 = −1
c1 = 2

.

Summing up the first two rows of the system returns: c3 = 0 and from this it follows c2 = 1 . The
solution of the initial value problem is:

u (t) = 2 · u [1](t) + u [2](t) = 2e−2t

 1
0

−1

 + e−t

 1
−1
0

 .

lim
t→∞

u (t) =

0
0
0

 .

c) No, the solution from a)

u(t) = c1 · u[1](t) + c2 · u[2](t) + c3u[3](t)

= c1 e−2t

 1
0

−1

 + c2 e−t

 1
−1
0

 + c3 et

1
1
0


does not converge to zero for arbitrary initial values. It converges to the zero solution if and only if the
initial values are such that c3 vanishes!
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Exercise 3:

Consider the linear differential equation of second order

u′′(t) + 7
t
u′(t) + 9

t2 u(t) = 0.

a) With the help of the ansatz: u0(t) = tk , determine a solution of the differential equation.

b) With the help of te reduction ansatz û(t) = u0(t)·w(t) find another solution of the differential equation and
provide the general solution of the differential equation.

c) Compute the solution of the boundary problem

u′′(t) + 7
t
u′(t) + 9

t2 u(t) = 0, 1 < t < e
1
3 , u(1) = 0, u(e 1

3 ) = 1.

d) Can you also calculate a solution of the following boundary value problem?

u′′(t) + 7
t
u′(t) + 9

t2 u(t) = 0, 1 < t < e
1
3 , u(1) = 0, u′(e 1

3 ) = 1.

Solution:

a) The ansatz u0(t) = tk returns for t ̸= 0

k(k − 1) + 7k + 9 = k2 + 6k + 9 = (k + 3)2 != 0 .

We obtain just one solution u0(t) = t−3 (up to multiplication by a constant). Since the space of
solutions has dimension two, we do not find a fundamental system.

b) Inserting the reduction ansatz û(t) = u0(t) ·w(t) into the differential equation returns as in the lecture

(u0w)′′ + 7
t
(u0w)′ + 9

t2 (u0w) = 0

⇒ (u′′
0w + 2u′

0w′ + u0w′′) + 7
t
(u′

0w + u0w′) + 9
t2 (u0w) = 0

⇒ u0w′′ + (2u′
0 + 7

t
u0)w′ + (u′′

0 + 7
t
u′

0 + 9
t2 u0︸ ︷︷ ︸

=0

)w = 0

⇒ t−3w′′ + (−6t−4 + 7
t
t−3)w′ = 0 t̸=0⇐⇒ w′′ + 1

t
w′ = 0

y=w′

=⇒ y′ = −1
t
y.

This is a separable differential equation in y(t)

dy

y
= −dt

t
=⇒ ln(|y|) = − ln(|t|) + k =⇒ y(t) = c

t
= w′(t)

w(t) = c ln(t) + c̃ and thus for example w(t) = ln(t).

With this w we get from our ansatz û(t) = w(t)u0(t) = ln(t)
t3 .

The general solution is
u(t) = c1

1
t3 + c2

ln(t)
t3 , c1, c2 ∈ R.
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c) The boundary values require:

u(1) = c1
1
13 + c2

ln(1)
13 = c1 = 0 =⇒ u(t) = c2

ln(t)
t3

and

u(e 1
3 ) = c2

ln
(

e
1
3

)
(

e
1
3

)3 = c2
1
3 ln(e)

e1 = 1 =⇒ c2 = 3e1

From this we obtain the unique solution u(t) = 3e ln(t)
t3 .

d) From u(1) = 0 it follows again c1 = 0 and hence u(t) = c2
ln(t)

t3 , thus

u′(t) = c2

(
1
t4 − 3 ln(t)

t4

)
= c2

t4 (1 − 3 ln(t)) .

For every value of c2 , one thus obtains u′(e 1
3 ) = c2

t4

(
1 − 3 · 1

3
)

= 0 .

The boundary condition u′(e 1
3 ) = 1 can thus not be satisfied. The boundary value problem has no

solution.

Hand in until: 12.01.2024


