Differential Equations I for Students of Engineering Sciences Sheet 6, Exercise class

Exercise 1: For each of the following matrices

$$
\boldsymbol{A}^{[1]}=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \quad \boldsymbol{A}^{[2]}=\left(\begin{array}{ll}
3 & 2 \\
0 & 3
\end{array}\right), \quad \boldsymbol{A}^{[3]}=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right), \quad \boldsymbol{A}^{[4]}=\left(\begin{array}{cc}
0 & 3 \\
-3 & 0
\end{array}\right)
$$

determine a real fundamental system of the solution space of

$$
\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}^{[k]} \boldsymbol{y}(t), \quad k=1,2,3,4
$$

Solution:

$$
\boldsymbol{A}^{[1]}=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

The eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=3$ of the system matrix can be read from the diagonal.
We get an eigenvector for $\lambda_{1}=1$ as solution to the system of equations

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right) \cdot\binom{v_{1}}{v_{2}}=\binom{0}{0} \Longleftarrow\binom{v_{1}}{v_{2}}=\binom{1}{0}
$$

We get an eigenvector for $\lambda_{2}=3$ as solution to the system

$$
\left(\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right) \cdot\binom{w_{1}}{w_{2}}=\binom{0}{0} \Longleftarrow\binom{w_{1}}{w_{2}}=\binom{1}{1} .
$$

From this we obtain the fundamental system $\left\{e^{t}\binom{1}{0}, e^{3 t}\binom{1}{1}\right\}$

$$
\boldsymbol{A}^{[2]}=\left(\begin{array}{ll}
3 & 2 \\
0 & 3
\end{array}\right)
$$

The eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=3$ of the system matrix can be read from the diagonal.
The eigenvectors for $\lambda_{1,2}=3$ have to satisfy the following system of equations:

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right) \cdot\binom{v_{1}}{v_{2}}=\binom{0}{0} \Longleftrightarrow v_{2}=0
$$

Thus there is only one eigenvector direction $\boldsymbol{v}=\binom{1}{0}$. We have to compute a generalized eigenvector

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right) \cdot\binom{w_{1}}{w_{2}}=\binom{1}{0} \Longleftarrow \boldsymbol{w}=\binom{0}{0.5}
$$

From this we obtain the fundamental system

$$
\left\{e^{3 t}\binom{1}{0}, e^{3 t}(t \boldsymbol{v}+\boldsymbol{w})\right\}=\left\{e^{3 t}\binom{1}{0}, e^{3 t}\binom{t}{0.5}\right\} .
$$

$\boldsymbol{A}^{[3]}=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
The eigenvalues of the system matrix $\lambda_{1}=3=\lambda_{2}=3$ can be once again read from the diagonal.
The eigenvectors for $\lambda_{1,2}=3$ have to satisfy the following system of equations:

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \cdot\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

Therefore we may choose any two linearly independent eigenvector directions and obtain, for example with the canonical eigenvectors, the fundamental system

$$
\left\{e^{3 t}\binom{1}{0}, e^{3 t}\binom{0}{1}\right\} .
$$

$$
\boldsymbol{A}^{[4]}=\left(\begin{array}{cc}
0 & 3 \\
-3 & 0
\end{array}\right)
$$

We obtain the eigenvalues of the system matrix from the condition $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\lambda^{2}+9=0$.
Hence $\lambda_{1}=-3 i$ and $\lambda_{2}=3 i$.
The eigenvectors for $\lambda_{1}=-3 i$ are obtained as solution of the of the system

$$
\left(\begin{array}{cc}
3 i & 3 \\
-3 & 3 i
\end{array}\right) \cdot\binom{z_{1}}{z_{2}}=\binom{0}{0} .
$$

Any vector with $z_{1}=i z_{2}$ fulfills the system. Thus for example we can choose $(i, 1)^{T}$. The complex conjugate vector is an eigenvector for $\lambda_{2}=3 i$.
Thuse we get the complex fundamental system

$$
\boldsymbol{z}^{[1]}(t)=e^{3 i t}\binom{-i}{1}, \quad \boldsymbol{z}^{[2]}(t)=e^{-3 i t}\binom{i}{1}
$$

A real fundamental system is given for example by $\left\{\operatorname{Re}\left(\boldsymbol{z}^{[1]}(t)\right), \operatorname{Im}\left(\boldsymbol{z}^{[1]}(t)\right)\right\}$.

$$
\text { With } \quad \boldsymbol{z}^{[1]}(t)=e^{3 i t}\binom{-i}{1}=(\cos (3 t)+i \sin (3 t))\binom{-i}{1}=\binom{-i \cos (3 t)+\sin (3 t)}{\cos (3 t)+i \sin (3 t)}
$$

the fundamental system is

$$
\left\{\binom{\sin (3 t)}{\cos (3 t)},\binom{-\cos (3 t)}{\sin (3 t)}\right\} .
$$

Exercise 2) Consider the system of differential equations

$$
\boldsymbol{u}^{\prime}=\frac{1}{t}\left(\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right) \boldsymbol{u}+\binom{4 t}{t} \quad t \geq 0.5
$$

a) Show that

$$
\boldsymbol{U}(t):=\left(\begin{array}{cc}
t^{-2} & t \\
-2 t^{-2} & t
\end{array}\right)
$$

is a fundamental system of the corresponding homogeneous system of differential equations .
b) Determine the general solution of the inhomogeneous problem.
c) Determine the solution of the corresponding initial value problem with initial values $\boldsymbol{u}(1)=\binom{1}{0}$.

Solution:

a) It holds

$$
\operatorname{det}(\boldsymbol{U}(t))=t^{-1}+2 t^{-1} \neq 0 \quad \forall t \geq 0.5
$$

Thus the functions

$$
\boldsymbol{u}_{1}(t)=\binom{t^{-2}}{-2 t^{-2}}, \quad \boldsymbol{u}_{2}(t)=\binom{t}{t}
$$

determine a fundamental system if they are solutions of the homogeneous system. It holds

$$
\begin{aligned}
\boldsymbol{u}_{1}^{\prime} & =\left(\begin{array}{ll}
\frac{-2}{t^{3}} & \frac{4}{t^{3}}
\end{array}\right)^{T} \\
\frac{1}{t}\left(\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right) \boldsymbol{u}_{1} & =\frac{1}{t}\left(\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right)\binom{\frac{1}{t^{2}}}{\frac{-2}{t^{2}}}=\frac{1}{t}\binom{\frac{-2}{t^{2}}}{\frac{4}{t^{2}}}
\end{aligned}
$$

\boldsymbol{u}_{1} is thus a solution of the homogeneous problem. For \boldsymbol{u}_{2} one computes analogously

$$
\begin{aligned}
\boldsymbol{u}_{2}^{\prime} & =\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{T} \\
\frac{1}{t}\left(\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right) \boldsymbol{u}_{2} & =\frac{1}{t}\left(\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right)\binom{t}{t}=\frac{1}{t}\binom{t}{t}
\end{aligned}
$$

\boldsymbol{u}_{2} is thus another solution of the homogeneous differential equation, hence $\boldsymbol{U}(t)$ is a fundamental matrix of the homogeneous system.
b) In order to determine the general solution of the inhomogeneous problem, we make the ansatz $\boldsymbol{u}_{p}(t):=$ $\boldsymbol{U}(t) \cdot \mathbf{c}(t)$ (variation of constants). This inserted into the differential equation returns the condition

$$
\begin{aligned}
\boldsymbol{U}(t)\binom{c_{1}^{\prime}(t)}{c_{2}^{\prime}(t)} & =\binom{4 t}{t} \\
\Longleftrightarrow\left(\begin{array}{cc}
t^{-2} & t \\
-2 t^{-2} & t
\end{array}\right)\binom{c_{1}^{\prime}(t)}{c_{2}^{\prime}(t)} & =\left(\begin{array}{c}
\frac{c_{1}^{\prime}(t)}{t^{\prime}} \\
\frac{-2 c_{1}^{\prime}(t)}{t^{2}}+t c_{2}^{\prime}(t) \\
c_{2}^{\prime}(t)
\end{array}\right)=\binom{4 t}{t} \\
\Longleftrightarrow\binom{\frac{3 c_{1}^{\prime}(t)}{t^{2}}}{\frac{-2 c_{1}^{\prime}(t)}{t^{2}}+t c_{2}^{\prime}(t)} & =\binom{3 t}{t} \Longleftrightarrow\binom{c_{1}^{\prime}(t)}{-2 t+t c_{2}^{\prime}(t)}=\binom{t^{3}}{t} \\
\Longleftrightarrow\binom{c_{1}^{\prime}(t)}{c_{2}^{\prime}(t)} & =\binom{t^{3}}{3} \Longleftarrow\binom{c_{1}(t)}{c_{2}(t)}=\binom{\frac{t^{4}}{4}}{3 t}
\end{aligned}
$$

From this we get the particular solution

$$
\boldsymbol{u}_{p}(t):=\boldsymbol{U}(t) \cdot \mathbf{c}(t)=\left(\begin{array}{cc}
t^{-2} & t \\
-2 t^{-2} & t
\end{array}\right)\binom{\frac{t^{4}}{4}}{3 t}=t^{2}\binom{\frac{13}{4}}{\frac{5}{2}}
$$

Thus the general solution of the inhomogeneous problem reads as follows

$$
\boldsymbol{u}(t)=k_{1}\binom{t^{-2}}{-2 t^{-2}}+k_{2}\binom{t}{t}+t^{2}\binom{\frac{13}{4}}{\frac{5}{2}}
$$

c) Inserting the initial values returns:

$$
\binom{k_{1}+k_{2}+\frac{13}{4}}{-2 k_{1}+k_{2}+\frac{5}{2}}=\binom{1}{0} \Longrightarrow k_{1}=\frac{1}{12}, k_{2}=-\frac{7}{3}
$$

Dates of classes: 08.01-12.01.2024

