Differential Equations I for Students of Engineering Sciences Sheet 5, Homework

Exercise 1)

Consider the following fourth-order differential equation

$$
\begin{equation*}
u^{(4)}(t)+a_{3} u^{\prime \prime \prime}(t)+a_{2} u^{\prime \prime}(t)+a_{1} u^{\prime}(t)+a_{0} u(t)=0 \tag{1}
\end{equation*}
$$

with real coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$. For each of the following sets of functions, determine whether they can be (with suitable coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$) a fundamental system for the solution space of the differential equation.
Justify your answers.
a) $\quad M_{1}:=\left\{u_{1}(t)=e^{t}, u_{2}(t)=e^{5 t}, u_{3}(t)=e^{9 t}\right\}$.
b) $\quad M_{2}:=\left\{u_{1}(t)=e^{t}, u_{2}(t)=e^{i t}, u_{3}(t)=e^{2 t}, u_{4}(t)=e^{2 i t}\right\}$.
c) $\quad M_{3}:=\left\{u_{1}(t)=1, u_{2}(t)=t, u_{3}(t)=e^{2 t}, u_{4}(t)=e^{-2 t}\right\}$.
d) $\quad M_{4}:=\left\{u_{1}(t)=e^{t}, u_{2}(t)=\sin (2 t), u_{3}(t)=e^{-2 i t}, u_{4}(t)=e^{2 i t}\right\}$.

Solution:

a) Since the space of solutions has dimension four, M_{1} cannot be a fundamental system for (1).
b) Complex solutions of linear differential equations with constant real coefficients always occur in conjugated complex pairs! Therefore M_{2} cannot be a fundamental system for (1).
c) M_{3} is a fundamental system for (1) with appropriate coefficients.

Not required from the students: the characteristic polynomial would be $P(\lambda)=\lambda^{2}\left(\lambda^{2}-4\right)$, the differential equation $y^{\prime \prime \prime \prime}(t)-4 y^{\prime \prime}(t)=0$.
d) M_{4} cannot be a fundamental system, since it holds:
$e^{2 i t}-e^{-2 i t}=2 i \sin (2 t)$. Thus the space spanned by the functions in M_{4} has only dimension three.

Exercise 2)

Consider the differential equation

$$
u^{\prime \prime}(t)+9 u(t)=b(t)
$$

a) Determine a real representation for the general solution of the corresponding homogeneous differential equation.
b) Compute the solutions of the differential equation for the inhomogeneities
i) $b(t)=5 e^{-t}$,
ii) $b(t)=5 \sin (2 t)$,
iii) $b(t)=5 \sin (3 t)$.
c) Determine the solution of the corresponding initial value problems for the initial values

$$
u(0)=u^{\prime}(0)=0
$$

In each case check whether the solutions are bounded for $t \geq 0$ and whenever possible provide upper bounds for $|u(t)|, t \geq 0$.

Solution:

a) Characteristic polynomial: $P(\lambda)=\lambda^{2}+9 \stackrel{!}{=} 0 \Longrightarrow \lambda_{1,2}= \pm 3 i$.

Basis of the solution space: $\left\{z^{[1]}(t)=e^{3 i t}, z^{[2]}(t)=e^{-3 i t}\right\}$.
With $u_{1}(t):=\operatorname{Re}\left(z^{[1]}(t)\right)=\frac{z^{[1]}(t)+z^{[2]}(t)}{2}=\cos (3 t)$
and $u_{2}(t):=\operatorname{Im}\left(z^{[1]}(t)\right)=\frac{z^{[1]}(t)-z^{[2]}(t)}{2 i}=\sin (3 t)$
one obtains a real basis of the solution space and the general solution

$$
u_{h}(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

b) i) $b(t)=5 e^{-t}$. Ansatz: $u_{p}(t)=k \cdot e^{-t}$.

Inserting into the differential equation returns

$$
\begin{aligned}
& k \cdot e^{-t}+9 k \cdot e^{-t} \stackrel{!}{=} 5 \cdot e^{-t} \Longrightarrow k=\frac{1}{2} \\
& u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{1}{2} e^{-t}
\end{aligned}
$$

ii) $\quad b(t)=5 \sin (2 t)$. Ansatz: $u_{p}(t)=a \cdot \cos (2 t)+b \cdot \sin (2 t)$.

Alternatively $b(t)=\frac{5}{2 i}\left(e^{2 i t}+e^{-2 i t}\right)$. Ansatz: $u_{p}(t)=c_{1} e^{2 i t}+c_{2} e^{-2 i t}$.
Inserting the real ansatz into the differential equation returns

$$
\begin{gathered}
-4 a \cdot \cos (2 t)-4 b \cdot \sin (2 t)+9 a \cdot \cos (2 t)+9 b \cdot \sin (2 t) \stackrel{!}{=} 5 \sin (2 t) \Longrightarrow a=0, b=1 \\
u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\sin (2 t)
\end{gathered}
$$

iii) $\quad b(t)=5 \sin (3 t)=\frac{5}{2 i}\left(e^{3 i t}+e^{-3 i t}\right)$

Since $\sin (3 t)$ solves the homogeneous differential equation, we make the ansatz: $u_{p}(t)=t(a \cdot \cos (3 t)+b \cdot \sin (3 t))$.
Alternative ansatz: $u_{p}(t)=t\left(c_{1} e^{3 i t}+c_{2} e^{-3 i t}\right)$.
Then it holds:
$u_{p}^{\prime}(t)=(a \cdot \cos (3 t)+b \cdot \sin (3 t))+t(-3 a \cdot \sin (3 t)+3 b \cdot \cos (3 t))$.
$u_{p}^{\prime \prime}(t)=(-6 a \cdot \sin (3 t)+6 b \cdot \cos (3 t))+t(-9 a \cdot \cos (3 t)-9 b \cdot \sin (3 t))$.

Inserting into the differential equation yields

$$
\begin{aligned}
& u_{p}^{\prime \prime}+9 u_{p} \\
& =-6 a \cdot \sin (3 t)+6 b \cdot \cos (3 t)+t(-9 a \cdot \cos (3 t)-9 b \cdot \sin (3 t))+9 t(a \cdot \cos (3 t)+b \cdot \sin (3 t)) \\
& =-6 a \cdot \sin (3 t)+6 b \cdot \cos (3 t) \stackrel{!}{=} 5 \sin (3 t) \Rightarrow b=0,-6 a=5, \Rightarrow u_{p}(t)=-\frac{5}{6} t \cos (3 t) . \\
& u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)-\frac{5}{6} t \cos (3 t) .
\end{aligned}
$$

c) i) $\quad b(t)=5 e^{-t}, \quad u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{1}{2} e^{-t}$.
$u(0)=c_{1}+\frac{1}{2} \stackrel{!}{=} 0 \Longrightarrow c_{1}=-\frac{1}{2}$.
$u^{\prime}(0)=3 c_{2} \cos (0)-\frac{1}{2} \stackrel{!}{=} 0 \Longrightarrow c_{2}=\frac{1}{6}$

$$
\begin{gathered}
u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{1}{2} e^{-t}=-\frac{1}{2} \cos (3 t)+\frac{1}{6} \sin (3 t)+\frac{1}{2} e^{-t} . \\
|u(t)| \leq\left|c_{1}\right|+\left|c_{2}\right|+\frac{1}{2}=\frac{7}{6}, \quad \forall t \geq 0 .
\end{gathered}
$$

ii) $\quad b(t)=5 \sin (2 t), \quad u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\sin (2 t)$.
$u(0)=c_{1} \stackrel{!}{=} 0 \Longrightarrow c_{1}=0$.
$u^{\prime}(0)=3 c_{2} \cos (0)+2 \cos (0)=3 c_{2}+2 \stackrel{!}{=} 0 \Longrightarrow c_{2}=-\frac{2}{3}$

$$
\begin{gathered}
u(t)=-\frac{2}{3} \sin (3 t)+\sin (2 t) \\
|u(t)| \leq\left|c_{1}\right|+\left|c_{2}\right|+1=\frac{5}{3}, \quad \forall t \geq 0 .
\end{gathered}
$$

iii) $\quad b(t)=5 \sin (3 t), \quad u(t)=c_{1} \cos (3 t)+c_{2} \sin (3 t)-\frac{5}{6} t \cos (3 t)$.
$u(0)=c_{1} \stackrel{!}{=} 0 \Longrightarrow c_{1}=0$.
$u^{\prime}(0)=3 c_{2} \cos (0)-\frac{5}{6} \cos (0) \stackrel{!}{=} 0 \Longrightarrow c_{2}=\frac{5}{18}$

$$
u(t)=\frac{5}{18} \sin (3 t)-\frac{5}{6} t \cos (3 t)
$$

Here one gets for example for $t_{k}=2 k \pi, k \in \mathbb{N}$

$$
u(2 k \pi)=c_{2} \sin (6 k \pi)-\frac{5}{6}(2 k \pi) \cos (6 k \pi)=-\frac{5 k \pi}{3} .
$$

And thus $\lim _{k \rightarrow \infty}|u(2 k \pi)|=\infty$.
The solution is unbounded (resonance case).

Exercise 3) Somewhat more demanding.

We look for a particular solution u_{p} of the inhomogeneous differential equation

$$
\mathcal{L}_{0}[u]:=\sum_{k=0}^{m} a_{k} u^{(k)}(t)=b(t)=b_{0} e^{\alpha t}, \quad a_{m}=1, a_{k} \in \mathbb{R}, 0 \neq b_{0} \in \mathbb{R}, \alpha \in \mathbb{C}
$$

a) Prove that the ansatz $u_{p}(t)=B e^{\alpha t}, B \in \mathbb{C}$ is successful if and only if α is not a root of the characteristic polynomial

$$
P_{0}(\lambda):=\sum_{k=0}^{m} a_{k} \lambda^{k} .
$$

b) Prove that the ansatz $u_{p}(t)=B t e^{\alpha t}, B \in \mathbb{C}$ is successful if α is a simple root of the characteristic polynomial

$$
P_{0}(\lambda):=\sum_{k=0}^{m} a_{k} \lambda^{k}
$$

Hint: Use the factorization from page 40 of the lecture.
c) Let now α be a root of the characteristic polynomial with multiplicity $l \in \mathbb{N}, l \geq 2$. Thus

$$
P_{0}(\lambda)=P_{l}(\lambda)(\lambda-\alpha)^{l}, P_{l}(\alpha) \neq 0
$$

and

$$
\mathcal{L}_{0}[u]:=\mathcal{L}_{l}\left[\left(\frac{d}{d t}-\alpha\right)^{l} u\right]
$$

Prove that $u_{p}(t):=B t^{l} e^{\alpha t}, B \in \mathbb{C}$ is an appropriate ansatz for a fundamental solution of the differential equation.

Hints:

Define P_{j} and \mathcal{L}_{j} by
$P_{0}(\lambda)=P_{j}(\lambda)(\lambda-\alpha)^{j}, \mathcal{L}_{0}[u]=\mathcal{L}_{j}\left[\left(\frac{d}{d t}-\alpha\right)^{j} u\right], \quad j=0,1,2, \ldots, l$.
α is a root of multiplicity $(l-j)-$ of P_{j}. In particular it is not a zero of P_{l}.
Show

$$
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right]=\frac{l!}{(l-j)!} B \mathcal{L}_{j}\left[t^{l-j} e^{\alpha t}\right]
$$

by induction and using the factorization method on page 40 of the lecture.

Solution:

a) To be fulfilled is $\mathcal{L}_{0}\left[B e^{\alpha t}\right]=b_{0} e^{\alpha t}$ with given $b_{0} \neq 0$.

$$
\mathcal{L}_{0}\left[B e^{\alpha t}\right]=B P_{0}(\alpha) e^{\alpha t} \stackrel{!}{=} b_{0} e^{\alpha t}
$$

This equation for B can be solved by $B=\frac{b_{0}}{P_{0}(\alpha)}$ iff $P_{0}(\alpha) \neq 0$.
b) Let α be a simple root of P_{0}, then it holds

$$
P_{0}(\lambda)=P_{1}(\lambda)(\lambda-\alpha), \quad P_{1}(\alpha) \neq 0
$$

and

$$
\mathcal{L}_{0}[u]:=\mathcal{L}_{1}\left[\left(\frac{d}{d t}-\alpha\right) u\right], \quad \mathcal{L}_{1}\left[e^{\alpha t}\right] \neq 0
$$

To be fulfilled is
$\mathcal{L}_{0}\left[B t e^{\alpha t}\right]=\mathcal{L}_{1}\left[\left(\frac{d}{d t}-\alpha\right)^{1} B t e^{\alpha t}\right]=\mathcal{L}_{1}\left[B e^{\alpha t}+\alpha B t e^{\alpha t}-\alpha B t e^{\alpha t}\right]=B \mathcal{L}_{1}\left[e^{\alpha t}\right]=B P_{1}(\alpha) e^{\alpha t} \stackrel{!}{=} b_{0} e^{\alpha t}$.
This is satisfied for $B=\frac{b_{0}}{P_{1}(\alpha)}$.
c) Let α be a zero of P_{0} of multiplicity $l . P_{j}$ and \mathcal{L}_{j} are defined as above.

Claim

$$
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right]=\frac{l!}{(l-j)!} B \mathcal{L}_{j}\left[t^{l-j} e^{\alpha t}\right], \quad j=1,2, \ldots, l
$$

Proof by Induction:

$$
j=1
$$

$$
\begin{aligned}
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right] & =\mathcal{L}_{1}\left[\left(\frac{d}{d t}-\alpha\right) B t^{l} e^{\alpha t}\right] \\
& =\mathcal{L}_{1}\left[B\left(l t^{l-1}+t^{l} \alpha-t^{l} \alpha\right) e^{\alpha t}\right]=\frac{l!}{(l-1)!} B \mathcal{L}_{1}\left[t^{l-1} e^{\alpha t}\right]
\end{aligned}
$$

Induction hypothesis: For an arbitrary $j \in \mathbb{N}, 1 \leq j \leq l-1$ it holds:

$$
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right]=\frac{l!}{(l-j)!} B \mathcal{L}_{j}\left[t^{l-j} e^{\alpha t}\right]
$$

Then it also holds

$$
\begin{aligned}
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right] & =\frac{l!}{(l-j)!} B \mathcal{L}_{j}\left[t^{l-j} e^{\alpha t}\right] \\
& \left.=\frac{l!}{(l-j)!} B \mathcal{L}_{j+1}\left[\left(\frac{d}{d t}-\alpha\right) t^{l-j} e^{\alpha t}\right]=\frac{l!}{(l-j)!} B \mathcal{L}_{j+1}\left[(l-j) t^{l-(j+1)}+\alpha t^{l-j}-\alpha t^{l-j}\right) e^{\alpha t}\right] \\
& =\frac{l!}{(l-j)!} B \mathcal{L}_{j+1}\left[(l-j) t^{l-(j+1)} e^{\alpha t}\right]=\frac{l!}{(l-(j+1))!} B \mathcal{L}_{j+1}\left[t^{l-(j+1)} e^{\alpha t}\right]
\end{aligned}
$$

The claim then holds for $j=1,2, \ldots l$. In particular even for $j=l$:

$$
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right]=\frac{l!}{(l-l)!} B \mathcal{L}_{l}\left[t^{l-l} e^{\alpha t}\right]=l!B \mathcal{L}_{l}\left[e^{\alpha t}\right]
$$

Since $\mathcal{L}_{l}\left[e^{\alpha t}\right] \neq 0$, we can choose $B=\frac{b_{0} e^{\alpha t}}{l!\mathcal{L}_{l}\left[e^{\alpha t}\right]}$ and with $u_{p}(t)=B t^{l} e^{\alpha t}$ obtain a particular solution of the differential equation.

