Differential Equations I for Students of Engineering Sciences Sheet 5, Exercise class

Exercise 1: Determine the general solutions of the following linear differential equations
a) $u^{(3)}-3 u^{\prime}-2 u=e^{-2 t}$.
b) $u^{(3)}-3 u^{\prime}-2 u=e^{2 t}$.
c) $u^{(3)}-3 u^{\prime}-2 u=t e^{-2 t}$.
d) $u^{(3)}-3 u^{\prime}-2 u=7 e^{2 t}-5 e^{-2 t}$.

Hint: For the particular solution of the inhomogeneous problem you may use a special ansatz.

Solution:

We first solve the corresponding homogeneous differential equation

$$
u^{(3)}-3 u^{\prime}-2 u=0
$$

with the characteristic polynomial

$$
\begin{aligned}
& P(\lambda)=\lambda^{3}-3 \lambda-2=(\lambda+1)\left(\lambda^{2}-\lambda-2\right)=(\lambda+1)^{2}(\lambda-2)=0 . \\
& P(\lambda)=0 \Longleftrightarrow \lambda_{1,2}=-1, \lambda_{3}=2 .
\end{aligned}
$$

From this we obtain as basis of the space of solutions: $u_{1}(t)=e^{-t}, u_{2}(t)=t e^{-t}, u_{3}(t)=e^{2 t}$.

We still need to compute a particular/special solution of the inhomogeneous differential equations respectively
a) $u^{(3)}-3 u^{\prime}-2 u=e^{-2 t}$

Inhomogeneity: (polynomial of degree zero) $\cdot e^{\mu t}$ where μ is not a root of the characteristic polynomial. Thus with a constant $B \in \mathbb{R}$ we make the ansatz

$$
u_{p, 1}(t):=B e^{-2 t}
$$

Inserting into the differential equation returns the requirement

$$
\begin{aligned}
u^{(3)}-3 u^{\prime}-2 u & =e^{-2 t}[-8(B)-3(-2 B)-2 B]=e^{-2 t} \\
& \Longrightarrow-4 B=1 \Longrightarrow u_{p, 1}=-\frac{1}{4} e^{-2 t}
\end{aligned}
$$

General solution:

$$
u(t)=u_{p, 1}(t)+u_{h}(t)=-\frac{1}{4} e^{-2 t}+\left(c_{1}+c_{2} t\right) e^{-t}+c_{3} e^{2 t}
$$

b) $u^{(3)}-3 u^{\prime}-2 u=e^{2 t}$

Inhomogeneity: (polynomial of degree zero) $\cdot e^{\mu t}$ where μ is a simple root of the characteristic polynomial. Here with a constant $a \in \mathbb{R}$ we make the ansatz

$$
u_{p, 2}(t):=a t e^{2 t}
$$

Inserting into the differential equation returns the constraint

$$
\begin{aligned}
u^{(3)}-3 u^{\prime}-2 u & =e^{2 t}[(8 a t+8 a+4 a)-3(2 a t+a)-2(a t)]=e^{2 t} \\
& \Longrightarrow 0 \cdot t+9 a=1 \Longrightarrow u_{p, 2}=\frac{t}{9} e^{2 t}
\end{aligned}
$$

General solution:

$$
u(t)=u_{p, 2}(t)+u_{h}(t)=\frac{t}{9} e^{2 t}+\left(c_{1}+c_{2} t\right) e^{-t}+c_{3} e^{2 t}
$$

c) $u^{(3)}-3 u^{\prime}-2 u=t e^{-2 t}$.

Inhomogeneity: (polynomial of degree one) $\cdot e^{\mu t}$ where μ is not a root of the characteristic polynomial. According to page 43 of the lecture, the ansatz is
$u_{p, 3}(t):=\left(B_{1} t^{1}+B_{0} t^{0}\right) e^{-2 t}$. In order to simplify the notation we choose $u_{p, 3}(t):=(a t+b) e^{-2 t}$.

$$
\begin{aligned}
u_{p, 3}(t) & :=(a t+b) e^{-2 t} \\
u_{p, 3}^{\prime}(t) & =(a-2 a t-2 b) e^{-2 t} \\
u_{p, 3}^{\prime \prime}(t) & =(-2 a-2 a+4 a t+4 b) e^{-2 t}=(-4 a+4 a t+4 b) e^{-2 t} \\
u_{p, 3}^{(3)}(t) & =(4 a+8 a-8 a t-8 b) e^{-2 t}=(12 a-8 a t-8 b) e^{-2 t}
\end{aligned}
$$

Inserting into the differential equation returns the constraint

$$
\begin{aligned}
u^{(3)}-3 u^{\prime}-2 u & =e^{-2 t}[12 a-8 a t-8 b-3(a-2 a t-2 b)-2(a t+b)]=t e^{-2 t} \\
& \Longrightarrow\left\{\begin{array}{lll}
t^{0}: & 12 a-8 b-3 a+6 b-2 b=0 & \Longrightarrow 9 a-4 b=0 \Longrightarrow b=\frac{9}{4} a \\
t^{:} & -8 a+6 a-2 a=1
\end{array}\right. \\
u_{p, 3} & =\left(-\frac{t}{4}-\frac{9}{16}\right) e^{-2 t}
\end{aligned}
$$

General solution:

$$
u(t)=u_{p, 3}(t)+u_{h}(t)=-\frac{t}{4}-\frac{9}{16} e^{-2 t}+\left(c_{1}+c_{2} t\right) e^{-t}+c_{3} e^{2 t}
$$

d) Due to the linearity of the problem, one gets a particular solution of the new problem as linear combination of the two particular $u_{p, 1}(t)$ and $u_{p, 2}(t)$. Thus the general solution is

$$
u(t)=7 u_{p, 2}(t)-5 u_{p, 1}(t)+u_{h}(t)=\frac{7}{9} t e^{2 t}+\frac{5}{4} e^{-2 t}+\left(c_{1}+c_{2} t\right) e^{-t}+c_{3} e^{2 t}
$$

Exercise 2)

a) Determine a real representation of the general solution of the differential equation

$$
u^{(3)}(t)+u^{\prime \prime}(t)+3 u^{\prime}(t)-5 u(t)=0
$$

b) Determine the general solutions of the differential equations:
i) $u^{(3)}(t)+u^{\prime \prime}(t)+3 u^{\prime}(t)-5 u(t)=10$,
ii) $u^{(3)}(t)+u^{\prime \prime}(t)+3 u^{\prime}(t)-5 u(t)=e^{t}$.

Solution:

a) Characteristic polynomial: $P(\lambda)=\lambda^{3}+\lambda^{2}+3 \lambda-5$.
$\lambda_{1}=1$ is a zero of P. Polynomial division yields
$P(\lambda)=(\lambda-1)\left(\lambda^{2}+2 \lambda+5\right)=(\lambda-1)\left((\lambda+1)^{2}+4\right)$.
The zeroes of P are: $\lambda_{1}=1, \lambda_{2}=-1+2 i, \lambda_{3}=-1-2 i$.
Complex fundamental system:

$$
\begin{aligned}
& u_{1}(t)=e^{t} \\
& z_{2}(t)=e^{(-1+2 i) t}=e^{-t} e^{2 i t}=e^{-t} \cos (2 t)+i e^{-t} \sin (2 t) \\
& z_{3}(t)=e^{(-1-2 i) t}=e^{-t} e^{-2 i t} \cdot=e^{-t} \cos (-2 t)+i e^{-t} \sin (-2 t)=e^{-t} \cos (2 t)-i e^{-t} \sin (2 t)
\end{aligned}
$$

With
$u_{2}(t):=\frac{z_{2}(t)+z_{3}(t)}{2}=\operatorname{Re}\left(e^{(-1+2 i) t}\right)$ and $u_{3}(t):=\frac{z_{2}(t)-z_{3}(t)}{2 i}=\operatorname{Im}\left(e^{(-1+2 i) t}\right)$
we obtain a real basis of the solution space:
$u_{1}(t)=e^{t}, u_{2}(t)=e^{-t} \cdot \cos (2 t), u_{3}(t)=e^{-t} \cdot \sin (2 t)$.
General solution: $u(t)=c_{1} e^{t}+c_{2} e^{-t} \cdot \cos (2 t)+c_{3} e^{-t} \cdot \sin (2 t)$.
b) The general solution of the homogeneous differential equation is known from Part a). For particular solutions of each of the inhomogeneous equations we make a special ansatz.
i) Inhomogeneity: polynomial of degree zero times $e^{0 \cdot t}$, where 0 is not a zero of the characteristic polynomial.
Ansatz: $u_{p}=$ polynomial of degree zero times $e^{0 \cdot t}=B$.
Inserting into the differential equation yields:

$$
-5 B=10 \Longleftrightarrow u_{p}=B=-2 \quad u(t)=c_{1} e^{t}+c_{2} e^{-t} \cdot \cos (2 t)+c_{3} e^{-t} \cdot \sin (2 t)-2
$$

ii) Inhomogeneity: polynomial of degree zero times $e^{1 \cdot t}$, where 1 is a zero of the characteristic polynomial.
Ansatz: $u_{p}=t$. polynomial of degree zero times $e^{1 \cdot t}=B \cdot t^{1} \cdot e^{t}$, such that

$$
u_{p}^{\prime}(t)=B \cdot(1+t) \cdot e^{t}, \quad u_{p}^{\prime \prime}(t)=B \cdot(2+t) \cdot e^{t}, \quad u_{p}^{(3)}(t)=B \cdot(3+t) \cdot e^{t}
$$

Inserting into the differential equation returns
$B e^{t}[3+t+2+t+3+3 t-5 t]=e^{t} \Longleftrightarrow 8 B=1$.
$\Longrightarrow u_{p}(t)=\frac{t e^{t}}{8}$ is a particular solution. Thus the general solution is
$u(t)=c_{1} e^{t}+c_{2} e^{-t} \cdot \cos (2 t)+c_{3} e^{-t} \cdot \sin (2 t)+\frac{t e^{t}}{8}$.

