Differential Equations I for Students of Engineering Sciences

Sheet 4, Homework

Exercise 1:

a) Which of the following differential equations for $u(t)$ are exact?
(i) $u+u^{\prime}=0$.
(ii) $(12 t u+3)+6 t^{2} \cdot u^{\prime}=0$.
(iii) $2 t\left(u^{2}-t^{2}-1\right)+2 u u^{\prime}=0$.
(iv) $u^{3}+e^{t}+3 t u^{2} u^{\prime}=0$.
b) For the exact differential equations in Part a) determine a corresponding potential and the general solution.

Solution:

a) (i) $u+u^{\prime}=0$. With $f(t, u)=u$ and $g(t, u)=1$ it follows $f_{u}=1 \neq 0=g_{t}$. Thus the differential equation is not exact.
(ii) $(12 t u+3)+6 t^{2} \cdot u^{\prime}=0$. Here it holds: $f(t, u)=12 t u+3, g(t, u)=6 t^{2}$, and from this $f_{u}=12 t=g_{t} \Longrightarrow$ The differential equation is exact.
(iii) $2 t\left(u^{2}-t^{2}-1\right)+2 u u^{\prime}=0$. With $f(t, u)=2 t\left(u^{2}-t^{2}-1\right)$ and $g(t, u)=2 u$ it follows $f_{u}=4 t u \not \equiv 0=g_{t}$.
The differential equation is not exact.
(iv) $u^{3}+e^{t}+3 t u^{2} u^{\prime}=0$. With $f(t, u)=u^{3}+e^{t}$ and $g(t, u)=3 t u^{2}$ it follows $f_{u}=3 u^{2}=g_{t}$. Thus the differential equation is exact.
b) We determine a potential Ψ for the differential equation in Part a)ii).
$(12 t u+3)+6 t^{2} \cdot u^{\prime}=0$.
$f(t, u)=12 t u+3, g(t, u)=6 t^{2}$,
$\Psi_{t}(t, u)=12 t u+3 \Longrightarrow \Psi(t, u)=6 t^{2} u+3 t+c(u) \Rightarrow$
$\Psi_{u}(t, u)=6 t^{2}+0+c^{\prime}(u) \stackrel{!}{=} g(t, u)=6 t^{2}$
$\Longleftarrow c^{\prime}(u)=0 \Longleftrightarrow c(u)=k \Longleftrightarrow \Psi(t, u)=6 t^{2} u+3 t+k$

Solutions of the differential equation satisfy:
$\Psi(t, u)=6 t^{2} u+3 t+k=\tilde{K} \Longleftrightarrow 6 t^{2} u+3 t=K$.
General solution: $u(t)=\frac{K-3 t}{6 t^{2}} \quad$ for $t \neq 0$.

A potential for the differential equation from a)iv) is computed as follows:

$$
\begin{array}{ll}
\Psi_{t} \stackrel{!}{=} u^{3}+e^{t} & \Rightarrow \Psi=t u^{3}+e^{t}+c(u) \Rightarrow \\
\Psi_{u}=3 t u^{2}+c^{\prime}(u) \stackrel{!}{=} 3 t u^{2} & \Rightarrow c^{\prime}(u)=0 \Rightarrow \Psi(t, u)=t u^{3}+e^{t}+c
\end{array}
$$

\Rightarrow The solutions of the differential equation satisfy

$$
\begin{aligned}
& \Psi(t, u)=t u^{3}+e^{t}=C \Rightarrow \\
& u^{3}=\frac{C-e^{t}}{t}
\end{aligned}
$$

General solution: $u=\left(\frac{C-e^{t}}{t}\right)^{\frac{1}{3}}$.

Exercise 2:

a) Determine the solution to the initial value problem

$$
u^{\prime \prime}(t)+2 t^{3} u^{\prime}(t)=e^{-\frac{t^{4}}{2}} \cdot \sin (2 t) \quad u(0)=2, u^{\prime}(0)=0
$$

Hint: It is sufficient to specify an integral representation of the solution.
b) Solve the initial value problem

$$
u^{\prime \prime}(t)=(u(t))^{-3}=g(u(t)), \quad u(0)=2, u^{\prime}(0)=0
$$

Solution:

a) The substitution $y(t):=u^{\prime}(t)$ returns the following linear differential equation for y.

$$
y^{\prime}(t)+2 t^{3} y(t)=e^{-\frac{t^{4}}{2}} \cdot \sin (2 t)
$$

Solution formula from the lecture with $a(t)=-2 t^{3}, b(t)=e^{-\frac{t^{4}}{2}} \cdot \sin (2 t)$
$A^{\prime}(t)=-2 t^{3}$ for example $A(t)=-\frac{t^{4}}{2}$
$e^{-A(t)} \cdot b(t)=e^{\frac{t^{4}}{2}} \cdot e^{-\frac{t^{4}}{2}} \cdot \sin (2 t)=\cdot \sin (2 t)=\left(B^{*}(t)\right)^{\prime}$.
So, for example $B^{*}(t)=-\frac{1}{2} \cos (2 t)$.
$y(t)=e^{A(t)}\left(B^{*}(t)+C\right)=e^{-\frac{t^{4}}{2}}\left(-\frac{1}{2} \cos (2 t)+C\right)=u^{\prime}(t)$.
The initial value for u^{\prime} yields
$u^{\prime}(0)=y(0)=\left(C-\frac{1}{2} \cos (0)\right) e^{0} \stackrel{!}{=} 0 \Longrightarrow C=\frac{1}{2}$.
For the solution $u(t)$ we thus obtain

$$
u(t)=u(0)+\int_{0}^{t}\left(\frac{1}{2}-\frac{1}{2} \cos (2 \tau)\right) e^{-\frac{\tau^{4}}{2}} d \tau=2+\frac{1}{2} \int_{0}^{t}(1-\cos (2 \tau)) e^{-\frac{\tau^{4}}{2}} d \tau
$$

b) $\quad u^{\prime \prime}(t)=(u(t))^{-3}=g(u(t))$.

For $u^{\prime} \neq 0$ the differential equation is equivalent to the equation
$u^{\prime} u^{\prime \prime}=u^{\prime} u^{-3}$.
From this one gets $\int u^{\prime} u^{\prime \prime} d t=\int u^{\prime} u^{-3} d t \Longleftrightarrow \frac{1}{2}\left(u^{\prime}\right)^{2}=\int \frac{d u}{u^{3}}=-\frac{1}{2 u^{2}}+C$
Therefore: $\quad u^{\prime}= \pm \sqrt{2 C-\frac{1}{u^{2}}}$.
For $t=0$ we know $u(0)=2, u^{\prime}(0)=0$. Using this in the formula for u^{\prime} we get
$u^{\prime}(0)=0= \pm \sqrt{2 C-\frac{1}{u(0)^{2}}}= \pm \sqrt{2 C-\frac{1}{4}} \Longrightarrow C=\frac{1}{8} \Longrightarrow u^{\prime}= \pm \sqrt{\frac{1}{4}-\frac{1}{u^{2}}}$.
Separation or variables yields:
$\frac{d u}{d t}= \pm \sqrt{\frac{u^{2}-4}{4 u^{2}}}= \pm \frac{\sqrt{u^{2}-4}}{2 u}$
$\int \frac{2 u d u}{\sqrt{u^{2}-4}}= \pm \int d t \Longleftrightarrow 2 \sqrt{u^{2}-4}= \pm t+\tilde{C} \quad \quad$ (substitution $z=u^{2}-4$)
From the initial condition $u(0)=2$ we obtain
$2 \sqrt{2^{2}-4}= \pm 0+\tilde{C} \Longrightarrow \tilde{C}=0 \Longrightarrow \sqrt{u^{2}-4}= \pm \frac{t}{2} \Longrightarrow u^{2}-4=\frac{t^{2}}{4} \Longrightarrow u(t)= \pm \sqrt{4+\frac{t^{2}}{4}}$.
Since $u(0)=2$, only the positive sign is allowed.

Exercise 3:

The speed at which a solid substance dissolves in a solvent is proportional to the still undissolved quantity of the substance $S(t)$ at time t and to the difference between the saturation concentration and the actual concentration of the already dissolved substance. Let

$$
\begin{aligned}
V & :=\text { volume } \quad K_{M}:=\text { saturation concentration, } \\
K_{0} & :=\text { initial concentration } \quad S(t):=\text { undissolved quantity of the substance } S \text { at time } t, \\
S_{0} & :=S(0)=\text { undissolved quantity of the substance } S \text { at time zero (initial value), } \\
K_{0} & +\frac{S_{0}-S(t)}{V}=\text { concentration of } S \text { at time } t, \\
\gamma & :=\text { proportionality constant. }
\end{aligned}
$$

a) Describe the diffusion process through a differential equation for $S(t)$.
b) Determine the solution of the initial value problem with data
$S_{0}=10 \mathrm{~kg}, V=100$ lit, $K_{M}=0.25 \mathrm{~kg} / \mathrm{lit}, K_{0}=0 \mathrm{~kg} / \mathrm{lit}, \gamma=4 \mathrm{lit} /(\mathrm{kg} \cdot \mathrm{s})$.
Use the substitution known from the lecture for logistic growth $u=S^{-1}$.

Solution:)

a) According to the problem, the following applies to the quantity resolved in the time interval Δt :

$$
S(t)-S(t+\Delta t)=\gamma \cdot S(t)\left(K_{M}-K_{0}-\frac{S_{0}-S(t)}{V}\right) \Delta t
$$

where γ is constant. Thus with $C:=K_{M}-K_{0}-\frac{S_{0}}{V}$

$$
S(t)-S(t+\Delta t)=\gamma \cdot S(t)\left(C+\frac{S(t)}{V}\right) \Delta t
$$

The process can be described by the differential equation

$$
S^{\prime}(t)=-\gamma \cdot S(t)\left(C+\frac{S(t)}{V}\right)
$$

b) With the given values one has $C:=K_{M}-K_{0}-\frac{S_{0}}{V}=0.25-0-\frac{10}{100}$

$$
S^{\prime}(t)=-4 S(t)\left(0.15+\frac{S(t)}{100}\right)=-\frac{1}{25} S(t)(15+S(t))=-\frac{3}{5} S(t)-\frac{1}{25} S^{2}(t)
$$

As in the lecture, with $y(t)=S^{-1}(t)$ we get

$$
y^{\prime}(t)=\frac{3}{5} y(t)+\frac{1}{25}
$$

Solution of the homogeneous problem:

$$
y_{h}^{\prime}=\frac{3}{5} y_{h} \Longrightarrow y_{h}=C e^{\frac{3}{5} t}
$$

Since the coefficients and the inhomogeneity term are constant, one can take the ansatz $y_{p}=\hat{c} \in \mathbb{R}$ and obtain $y_{p}=-\frac{1}{15}$.
Alternatively: Variation of constants or solution formula from lecture 1.
Altogether thus:

$$
y(t)=C e^{\frac{3}{5} t}-\frac{1}{15} \Longrightarrow S(t)=y(t)^{-1}=\frac{15}{c e^{\frac{3}{5} t}-1}
$$

From the initial value $S(0)=10$ finally one finds $c=\frac{5}{2}$ and from this the uniques solution

$$
S(t)=\frac{30}{5 e^{\frac{3}{5} t}-2}
$$

Hand in until: 01.12.2023

