Differential Equations I for Students of Engineering Sciences
 Sheet 4, Exercise class

Exercise 1)

Determine which of the following differential equations is separable, linear, Bernoulli, Riccati or a similarity differential equation. If necessary provide a substitution which transforms the differential equation into a separable or linear differential equation. How do the new differential equations obtained by substitution read?

Hint: you don't have to solve the differential equations, but feel free to do so!
a) $\left(1+e^{2 t}\right) u^{\prime}=-2 e^{2 t} u$
b) $u^{\prime}-2 t^{2}(u-1)+t u(u-2)=1-t-t^{3}$. Hint: there is a solution $u_{p}(t)=\alpha t+\beta$.
c) $\cos (t) u^{\prime}+\sin (t) u=-\cos ^{2}(t) u$
d) $u-\frac{1}{t}-\frac{1}{u} u^{\prime}=0$
e) $u^{\prime}=2 t\left(2 t^{2} u^{2}-1\right) u$
f) $u-t u^{\prime}=\frac{t^{3}}{u^{2}}$

Solution:

a) $u^{\prime}=\frac{-2 e^{2 t}}{1+e^{2 t}} u$ is separable and it can be directly solved.
b)

$$
u^{\prime}-2 t^{2}(u-1)+t u(u-2)=1-t-t^{3} \Longleftrightarrow u^{\prime}-\left(2 t^{2}+2 t\right) u+t u^{2}=1-t-2 t^{2}-t^{3}
$$

The differential equation is Riccati with $a(t)=2 t^{2}+2 t$ and $b(t)=-t$.
The ansatz $u_{p}=\alpha t+\beta$ inserted into the differential equation yields:

$$
\alpha-\left(2 t^{2}+2 t\right)(\alpha t+\beta)+t(\alpha t+\beta)^{2}=1-t-2 t^{2}-t^{3} .
$$

Comparison of coefficients returns
$\alpha=\beta=1$ also $u_{p}(t)=t+1$.
Now we set $y=\frac{1}{u-u_{p}}$ and according to the lecture/auditorium exercise class obtain the equation for y :

$$
y^{\prime}=-\left[a(t)+2 b(t) u_{p}(t)\right] y-b(t) \Longleftrightarrow y^{\prime}=-\left[2 t^{2}+2 t-2 t(t+1)\right] y=t
$$

Thus $y^{\prime}(t)=t$. This is not only a linear differential equation, but even a directly integrable equation.
c) $\cos (t) u^{\prime}+\sin (t) u=-\cos ^{2}(t) u \Longleftrightarrow u^{\prime}=[-\tan (t)-\cos (t)] u$.

The equation is separable.
d) $u-\frac{1}{t}-\frac{1}{u} u^{\prime}=0 \Longleftrightarrow u^{2}-\frac{u}{t}-u^{\prime}=0 \Longleftrightarrow u^{\prime}=-\frac{1}{t} u+u^{2}$.

The differential equation is Bernoulli with

$$
\alpha=2, a(t)=-\frac{1}{t}, b(t)=1
$$

One substitutes $y=u^{-1}$ and obtains the new differential equation:

$$
y^{\prime}=-1 \cdot\left(-\frac{1}{t} y+1\right)=\frac{1}{t} y-1
$$

e) $u^{\prime}=2 t\left(2 t^{2} u^{2}-1\right) u=4 t^{3} u^{3}-2 t u \Longleftrightarrow u^{\prime}=-2 t u+4 t^{3} u^{3}$
is Bernoulli with

$$
\alpha=3, a(t)=-2 t, b(t)=4 t^{3} .
$$

One substitutes $y=u^{-2}$ and obtains the linear differential equation :

$$
y^{\prime}=-2 \cdot\left(-2 t y+4 t^{3}\right)=4 t y-8 t^{3}
$$

f) $u^{\prime}=\frac{u}{t}-\left(\frac{t}{u}\right)^{2}$ is a similarity differential equation. The substitution $y=\frac{u}{t}$ leads to the differential equation

$$
y^{\prime}=\frac{-y^{-2}}{t}
$$

This is separable.

Exercise 2)

Determine the general solution of the differential equation

$$
u^{\prime}(t)+2 u(t)-t u(t)^{4}=0
$$

Solution 2:

The differential equation is a Bernoulli equation.
With $\alpha=4, a(t)=-2$ and $b(t)=t$ and $y=u^{1-\alpha}=u^{-3}$ one obtains the linear differential equation in y

$$
y^{\prime}(t)=(1-\alpha)(a(t) y(t)+b(t))=-3(-2 y(t)+t)=6 y(t)-3 t .
$$

Version 1) Variation of constants.
$y_{h}^{\prime}=6 y_{h} \Longrightarrow y_{h}(t)=e^{\int 6 d t}=C e^{6 t}$.
Variation of constants

$$
\begin{aligned}
& y_{p}(t)=C(t) e^{6 t} \xrightarrow{\text { ODE }} C^{\prime}(t) e^{6 t} \stackrel{!}{=}-3 t \\
& C(t)=\int-3 t e^{-6 t} d t=\left[-3 t \frac{e^{-6 t}}{-6}\right]-\int-3 \frac{e^{-6 t}}{-6} d t=\frac{t}{2} e^{-6 t}-\frac{1}{2} \int e^{-6 t} d t \\
& \quad=\left(\frac{t}{2}+\frac{1}{12}\right) e^{-6 t}+K .
\end{aligned}
$$

Thus for example with $K=0$

$$
\begin{aligned}
& y_{p}(t)=C(t) e^{6 t}=\left(\frac{t}{2}+\frac{1}{12}\right) e^{-6 t} \cdot e^{6 t} \Longrightarrow y_{p}(t)=\frac{t}{2}+\frac{1}{12} . \\
& y(t)=y_{h}(t)+y_{p}(t)=C e^{6 t}+\frac{t}{2}+\frac{1}{12} .
\end{aligned}
$$

Version 2) Solution formula from Lecture 1.
$A^{\prime}(t)=\hat{a}(t)=6$ for example $A(t)=6 t$.
With $\hat{b}(t)=-3 t$ we compute

$$
\begin{aligned}
& e^{-A(t)} \cdot \hat{b}(t)=e^{-6 t} \cdot(-3 t)=-3 t e^{-6 t}=\left(B^{*}(t)\right)^{\prime} \\
& B^{*}(t)=\int-3 t e^{-6 t} d t=\left[-3 t \frac{e^{-6 t}}{-6}\right]-\int-3 \frac{e^{-6 t}}{-6} d t=\frac{t}{2} e^{-6 t}-\frac{1}{2} \int e^{-6 t} d t \\
& \quad=\left(\frac{t}{2}+\frac{1}{12}\right) e^{-6 t}+K
\end{aligned}
$$

The choice $B^{*}(t)=\left(\frac{t}{2}+\frac{1}{12}\right) e^{-6 t}$ returns

$$
y(t)=e^{6 t}\left(B^{*}(t)+C\right)=e^{6 t}\left(\left(\frac{t}{2}+\frac{1}{12}\right) e^{-6 t}+C\right) .
$$

Since $y=u^{1-\alpha}=u^{-3}$ we obtain

$$
u(t)=\frac{1}{\sqrt[3]{y}}
$$

Exercise 3: Compute the solution of the differential equation

$$
u^{\prime}(t)=1-t+t^{2}+u(t)-2 t u(t)+(u(t))^{2} .
$$

Hint: there exists a polynomial solution $u_{p}(t)=m t+k$.
Solution: The differential equation is Riccati with $a(t)=1-2 t, b(t)=1, c(t)=1-t+t^{2}$.
Inserting the ansatz $u_{p}=m t+k$ in the differential equation returns

$$
m \stackrel{!}{=} 1-t+t^{2}+m t+k-2 m t^{2}-2 k t+m^{2} t^{2}+2 m k t+k^{2}
$$

Thus
$0 \cdot t^{2}+0 \cdot t+m \stackrel{!}{=}\left(1-2 m+m^{2}\right) \cdot t^{2}+(-1+m-2 k+2 m k) \cdot t+\left(1+k+k^{2}\right)$
Comparison of the coefficients yields:
$0=\left(1-2 m+m^{2}\right)=(1-m)^{2} \rightarrow m=1$,
$0=(-1+m+2 m k-2 k) \rightarrow 0=(-1+1+2 k-2 k)=0$,
and
$m=\left(1+k+k^{2}\right) \rightarrow 0=k(k+1)$.
For example we may choose $k=0$ and from this $u_{p}=t$.
Substitution: $y:=\frac{1}{u-u_{p}}=\frac{1}{u-t}$
Thus from the lecture we obtain:

$$
y^{\prime}=-\left[a(t)+2 u_{p}(t) b(t)\right] y(t)-b(t)=-[1-2 t+2 t] y(t)-1=-y(t)-1
$$

The solution of the homogeneous differential equation $y^{\prime}=-y$ is now well known: $y_{h}(t)=c e^{-t}$.
A particular solution $y_{p}(t)=-1$ of the inhomogeneous differential equation can be guessed through the ansatz $y_{p}(t)=\hat{c}$. Compute with the formula from the first lecture or by variation of the constants:
$y_{p}(t):=c(t) e^{-t} \xrightarrow{\text { ODE }} c^{\prime}(t) e^{-t}=-1 \Longrightarrow c^{\prime}(t)=-e^{t} \Longrightarrow c(t)=-e^{t}+C$
Thus for example (with $C=0$): $y_{p}(t)=-e^{t} e^{-t}=-1$.
And from this $y(t)=c e^{-t}-1$.
Reverse transformation:
$y=\frac{1}{u-t} \Longrightarrow u-t=\frac{1}{y}=\frac{1}{c e^{-t}-1} \Longrightarrow u(t)=t+\frac{1}{c e^{-t}-1}$.

Dates of classes: 27.11-01.12.2023.

