Differential Equations I for Students of Engineering Sciences

Sheet 3, Homework

Exercise 1:

a) Determine the solution of the following initial value problem

$$
y^{\prime}(t)=t+t(y(t))^{2} \quad \text { for } t>0, \quad y(0)=1
$$

On which interval $I=\left[0, t^{*}\right)$ is its solution defined?
b) Find the general solution of the following differential equation.

$$
y^{\prime}(t)=e^{-2 t} \cdot \sqrt[3]{y(t)}
$$

c) Which solution results in b) if the initial value $y(0)=1$ is given?
d) Which solution results in b) if the initial value $y(0)=0$ is given?

Sketch of solution of Exercise 1)

a) It is a separable differential equation.One computes
$\frac{d y}{d t}=t\left(1+y^{2}\right) \Longleftrightarrow \frac{d y}{1+y^{2}}=t d t . \quad$ (1 point)
Thus
$\int \frac{1}{1+y^{2}} d y=\int t d t \Longleftrightarrow \arctan (y(t))=\frac{t^{2}}{2}+C$.
$\Longleftrightarrow y(t)=\tan \left(\frac{t^{2}}{2}+C\right)$.
(1 point)
$y(0)=\tan \left(\frac{0^{2}}{2}+C\right) \stackrel{!}{=} 1 \Longleftrightarrow C=\frac{\pi}{4}+k \pi, k \in \mathbb{Z}$.
(1 point)
As $\tan (\alpha+k \pi)=\tan (\alpha), \forall k \in \mathbb{Z}, \forall \alpha \in \mathbb{R}$, one may choose any k to represent the function. Thus for example $y(t)=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)$. (1 point)
The solution is only defined for $\frac{t^{2}}{2}<\frac{\pi}{4}$. The tangent function has poles for the arguments $k \pi+\frac{\pi}{2}, k \in \mathbb{Z} . \quad(1$ point)
b) It is another separable differential equation.
$\frac{d y}{d t}=e^{-2 t} \cdot \sqrt[3]{y(t)} \stackrel{(*)}{\Longleftrightarrow} \frac{d y}{\sqrt[3]{y}}=e^{-2 t} d t . \quad$ (1 point)
From this one has
$\int y^{-\frac{1}{3}} d y=\int e^{-2 t} d t \Longleftrightarrow \frac{3}{2} y^{\frac{2}{3}}=\frac{e^{-2 t}}{-2}+\tilde{C}$
(1 point)
$\Longleftrightarrow \sqrt[3]{y^{2}(t)}=C-\frac{e^{-2 t}}{3}$ (C $\left.=\frac{2}{3} \tilde{C}\right)$
Thus $y(t)= \pm \sqrt{\left(C-\frac{e^{-2 t}}{3}\right)^{3}}$.
(1 point)
c) $y(0)= \pm \sqrt{\left(C-\frac{e^{0}}{3}\right)^{3}}= \pm \sqrt{\left(C-\frac{e^{0}}{3}\right)^{3}} \stackrel{!}{=} 1$

Only the positive sign is allowed and it returns $C=\frac{4}{3}$.
(1 point)
d) $y(0)= \pm \sqrt{\left(C-\frac{e^{0}}{3}\right)^{3}}= \pm \sqrt{\left(C-\frac{e^{0}}{3}\right)^{3}} \stackrel{!}{=} 0$

It yields $C=\frac{1}{3}$ but there is no indication on the sign.
(1 point)
We will come back to this problem later on. Here one may already notice that the first transformation (*) in Part b) can only be carried out for $y \neq 0$.

Exercise 2:

a) Consider the differential equation

$$
y^{\prime}(t)=f(\alpha t+\beta y(t)+\gamma)
$$

with $\alpha, \beta, \gamma \in \mathbb{R}$ and $\alpha+\beta f(\alpha t+\beta y(t)+\gamma) \neq 0$.
Show that with the help of the substitution

$$
u(t):=\alpha t+\beta y(t)+\gamma
$$

it can be transformed into a separable differential.
b) Determine the general solution of the differential equation

$$
y^{\prime}=1+\frac{2}{t-y+4}, \quad \text { for } t-y+4>0
$$

c) Check the solution obtained in Part b) by inserting it into the differential equation.

Sketch of solution for Exercise 2:

a)

$$
\begin{aligned}
u(t):=\alpha t+\beta y(t)+\gamma & \Longrightarrow u^{\prime}=\alpha+\beta y^{\prime}=\alpha+\beta f(u) \\
\frac{d u}{\alpha+\beta f(u)} & =d t . \quad(2 \text { points })
\end{aligned}
$$

b) From Part a) it follows with $\alpha=1, \beta=-1, \gamma=4$ and $f(u)=1+\frac{2}{u}$

$$
u^{\prime}=1-\left(1+\frac{2}{u}\right)=-\frac{2}{u}
$$

(2 points)
Thus we obtain

$$
\begin{equation*}
\int u d u=-\int 2 d t \Longrightarrow \frac{u^{2}}{2}=-2 t+\tilde{c} \Longrightarrow u(t)= \pm \sqrt{c-4 t} \tag{2points}
\end{equation*}
$$

The solution is only defined for $c-4 t>0$. Transforming back yields

$$
\begin{equation*}
y(t)=t+4 \mp \sqrt{c-4 t} \tag{1point}
\end{equation*}
$$

c) Inserting into the differential equation on the left-hand side returns:

$$
y^{\prime}=1 \mp \frac{1}{2 \sqrt{c-4 t}} \cdot(-4)=1 \pm \frac{2}{\sqrt{c-4 t}}
$$

and on the right-hand side

$$
1+\frac{2}{t-y+4}=1+\frac{2}{t-(t+4 \mp \sqrt{c-4 t})+4}=1 \pm \frac{2}{\sqrt{c-4 t}}
$$

(3 points)

