Differential Equations I for Students of Engineering Sciences

Sheet 2, Homework

Exercise 1:

We consider the differential equation $y^{\prime}-2 y=4 t$.
a) Show that $y_{p}(t)=-2 t-1$ solves the differential equation.
b) Let \tilde{y} be a second solution of the differential equation.. Show that $y:=\tilde{y}-y_{p}$ solves the corresponding homogeneous differential equation $y^{\prime}-2 y=0$.
c) Compute solutions y_{h} of the corresponding homogeneous differential equation $y_{h}^{\prime}-2 y_{h}=0$, for example with the help of the formula on page 9 of the lecture.
d) From b) it follows that every solution of the inhomogeneous differential equation can be written as sum of a solution of the homogeneous differential equation and y_{p}. Calculate the solution of the initial value problem

$$
y^{\prime}-2 y=4 t, \quad y(0)=2
$$

Solution:

a) Inserting $y_{p}(t)=-2 t-1$ into the differential equation delivers:
$-2-2(-2 t-1)=-2+4 t+2=4 t$.
b) It holds
$y^{\prime}-2 y=\left(\tilde{y}^{\prime}-y_{p}^{\prime}\right)-2\left(\tilde{y}-y_{p}\right)=\underbrace{\left(\tilde{y}^{\prime}-2 \tilde{y}\right)}_{4 t}-\underbrace{\left(y_{p}^{\prime}-2 y_{p}\right)}_{4 t}=0$.
c) The solutions y_{h} of the corresponding homogeneous differential equation $y_{h}^{\prime}-2 y_{h}=0$ can either be guessed, determined according to the formula on page 5 of the lecture, or computed according to page 9 of the lecture.
Using the notation of the lecture we have $a(t)=2$ thus
$A(t)=2 t+\hat{C}$ and from this $y_{h}(t)=e^{\hat{C}} e^{2 t}=C e^{2 t}$.
d) From a) and b) we obtain $y(t)=-2 t-1+C e^{2 t}$.

The initial condition requires
$y(0)=0-1+C e^{0}=C-1 \stackrel{!}{=} 2 \Longrightarrow C=3$.
Thus the solution of the initial value problem is $y(t)=-2 t-1+3 e^{2 t}$.

Exercise 2:

Analogously to the procedure on page 9 of the lecture, prove the representation given on page 11

$$
\begin{equation*}
u(t)=e^{A(t)}\left(B^{*}(t)+C\right), \quad \text { with } A^{\prime}(t)=a(t),\left(B^{*}(t)\right)^{\prime}=e^{-A(t)} \cdot b(t), C \in \mathbb{R} \tag{*}
\end{equation*}
$$

for any solution of the differential equation

$$
u^{\prime}(t)=a(t) \cdot u(t)+b(t)
$$

Where the same assumptions of the lecture apply to a and b.

Hint:
Prove first, by a substitution into the differential equation, that a solution is given by (*).

Conversely, assume that you have a solution u and, analogous to the procedure on page 9 of the lecture, show that $e^{-A(t)} u(t)-B^{*}(t)$ is constant.

Solution:

First of all, with $\left(^{*}\right)$ it holds
$u^{\prime}(t)=A^{\prime}(t) e^{A(t)}\left(B^{*}(t)+C\right)+e^{A(t)}\left(B^{*}(t)\right)^{\prime}=a(t) \underbrace{e^{A(t)}\left(B^{*}(t)+C\right)}_{u(t)}+\underbrace{e^{A(t)}\left(e^{-A(t)} \cdot b(t)\right)}_{b(t)}=a(t) u(t)+b(t)$.
On the other hand, let u be a solution of the differential equation. Then $u^{\prime}(t)=a(t) u(t)+b(t)$ and thus
$\left(e^{-A(t)} u(t)-B^{*}(t)\right)^{\prime}=-a(t) e^{-A(t)} u(t)+e^{-A(t)} u^{\prime}(t)-\left(e^{-A(t)} \cdot b(t)\right)=e^{-A(t)} \cdot\left(u^{\prime}(t)-a(t) u(t)-b(t)\right)=0$.
Hence $e^{-A(t)} u(t)-B^{*}(t)=C \Longleftrightarrow u(t)=e^{A(t)}\left(B^{*}(t)+C\right)$.

Exercise 3:

Determine a solution of the initial value problem

$$
u^{\prime}(t)=\cos (t) \cdot u(t)+t e^{\sin (t)}, \quad u(0)=5
$$

Solution:

With the same notation of Exercise 2) we have $a(t)=\cos (t)$ and $b(t)=t e^{\sin (t)}$.
Thus we can choose $A(t)=\sin (t)$ and obtain
$e^{-A(t)} \cdot b(t)=e^{-\sin (t)} \cdot t e^{\sin (t)}=t=\left(B^{*}(t)\right)^{\prime}$.
The choice $B^{*}(t)=\frac{t^{2}}{2}$ delivers

$$
u(t)=e^{A(t)}\left(B^{*}(t)+C\right)=e^{\sin (t)}\left(\frac{t^{2}}{2}+C\right)
$$

Using the initial condition $u(0)=5$ we find

$$
u(0)=e^{A(0)}\left(B^{*}(0)+C\right)=e^{\sin (0)}\left(\frac{0^{2}}{2}+C\right)=1 \cdot(0+C)=5 \Longrightarrow C=5 .
$$

