Differential Equations I for Students of Engineering Sciences

Sheet 7, Exercise class

To shorten the notation we employ the Doetsch symbol:

$$
F(s):=\mathscr{L} f(s):=\int_{0}^{\infty} e^{-s t} f(t) d t \Longleftrightarrow f(t) \circ \bullet F(s)
$$

The following correspondences or relations for $\operatorname{Re}(s)>\gamma$, which were either proved in the lecture or could be proved completely analogously to the lectures procedure, may be used. We always have $f(t)=0, \forall t<0$.

$f(t), t \geq 0$	F	γ
1 i.e. $h_{0}(t)$	$\frac{1}{s}$	0
$h_{a}(t)$	$e^{-a s} \frac{1}{s}$	0
$t^{n}, \quad n \in \mathbb{N}$	$\frac{n!}{s^{n+1}}$	0
$e^{a t}, \quad a \in \mathbb{C}$	$\frac{1}{s-a}$	$\operatorname{Re}(a)$
$e^{a t} \sin (\omega t), \quad \omega \in \mathbb{R}$	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$	0
$e^{a t} \cos (\omega t), \quad \omega \in \mathbb{R}$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$	0

$h_{a}(t)$ for $a \geq 0$ is defined as follows: $\quad h_{a}(t):= \begin{cases}1 & t \geq a \geq 0, \\ 0 & t<a .\end{cases}$
If $f(t) \circ \bullet F(s)$, then the following shifting theorems hold.
I) $h_{a}(t) f(t-a) \quad \circ e^{-s a} F(s)$

Shifting in the original space
Multiplication with exponential function in the image space
II) $\quad e^{a t} f(t) \quad \circ \cdot F(s-a)$

Shifting in
the image space/ Multiplication with exponential function in the original space

Exercise 1:

a) Which is the algebraic equation resulting from Laplace transformation of the initial value problem

$$
u^{\prime \prime}-2 u^{\prime}+u=\sin (4 t)+2 t e^{-t}, \text { for } t>0, \quad u(0)=1, u^{\prime}(0)=0 ?
$$

Please justify your answer by intermediate computations.
Compute the solution of the algebraic equation.
b) Let $F(s)=\frac{1}{s(s+1)^{2}}$ be the Laplace transform of the function

$$
f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}, \quad f: t \mapsto f(t)
$$

Determine $f(t)$.

Exercise 2:

a) For the following matrices \boldsymbol{A} analyse the stability of the stationary point $(0,0)^{T}$ of the linear system $\boldsymbol{u}^{\prime}(t)=A \boldsymbol{u}(t)$.
i) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$,
ii) $A=\left(\begin{array}{cc}-1 & 0 \\ -1 & -1\end{array}\right)$,
iii) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
b) Consider the following linear system

$$
\dot{\boldsymbol{u}}(t)=\left(\begin{array}{ccc}
-3 & 0 & 3 \\
-1 & -\gamma & 1 \\
3 & 0 & -3
\end{array}\right) \quad \boldsymbol{u}(t)
$$

Determine the stability behaviour of the stationary point $(0,0,0)^{T}$ depending on the parameter $\gamma \in \mathbb{R}$.
Dates of classes: 22.01.-26.01.2024

