## Differential Equations I for Students of Engineering Sciences

## Sheet 6, Homework

## Exercise 1:

Consider the system of differential equations

$$
\boldsymbol{u}^{\prime}(t)=\left(\begin{array}{cc}
-3 & 2 \\
-8 & -3
\end{array}\right) \boldsymbol{u}(t)+\binom{20}{20} .
$$

a) Determine a real fundamental system of the corresponding homogeneous system of differential equations.
b) With the help of an appropriate ansatz determine a particular solution of the inhomogeneous system and provide the general solution of the inhomogeneous differential equation.

## Exercise 2)

Consider the system of differential equations

$$
\boldsymbol{u}^{\prime}(t)=\boldsymbol{A} \cdot \boldsymbol{u}(t)=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 1 \\
0 & 0 & -2
\end{array}\right) \cdot \boldsymbol{u}(t) .
$$

a) Determine the general solution of the system.
b) Determine the solution $\boldsymbol{u}(t)$ of the corresponding initial value problem with

$$
\boldsymbol{u}(0)=\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right)
$$

and compute for this solution $\lim _{t \rightarrow \infty} \boldsymbol{u}(t)$.
c) Does the solution of the system from part a) converge to zero for $t \rightarrow \infty$ for every initial conditions? Justify your answer.

## Exercise 3:

Consider the linear differential equation of second order

$$
u^{\prime \prime}(t)+\frac{7}{t} u^{\prime}(t)+\frac{9}{t^{2}} u(t)=0
$$

a) With the help of the ansatz: $u_{0}(t)=t^{k}$, determine a solution of the differential equation.
b) With the help of te reduction ansatz $\hat{u}(t)=u_{0}(t) \cdot w(t)$ find another solution of the differential equation and provide the general solution of the differential equation.
c) Compute the solution of the boundary problem

$$
u^{\prime \prime}(t)+\frac{7}{t} u^{\prime}(t)+\frac{9}{t^{2}} u(t)=0, \quad 1<t<e^{\frac{1}{3}}, \quad u(1)=0, u\left(e^{\frac{1}{3}}\right)=1
$$

d) Can you also calculate a solution of the following boundary value problem?

$$
u^{\prime \prime}(t)+\frac{7}{t} u^{\prime}(t)+\frac{9}{t^{2}} u(t)=0, \quad 1<t<e^{\frac{1}{3}}, \quad u(1)=0, u^{\prime}\left(e^{\frac{1}{3}}\right)=1
$$

