Differential Equations I for Students of Engineering Sciences
 Sheet 6, Exercise class

Exercise 1: For each of the following matrices

$$
\boldsymbol{A}^{[1]}=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \quad \boldsymbol{A}^{[2]}=\left(\begin{array}{ll}
3 & 2 \\
0 & 3
\end{array}\right), \quad \boldsymbol{A}^{[3]}=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right), \quad \boldsymbol{A}^{[4]}=\left(\begin{array}{cc}
0 & 3 \\
-3 & 0
\end{array}\right)
$$

determine a real fundamental system of the solution space of

$$
\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}^{[k]} \boldsymbol{y}(t), \quad k=1,2,3,4
$$

Exercise 2) Consider the system of differential equations

$$
\boldsymbol{u}^{\prime}=\frac{1}{t}\left(\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right) \boldsymbol{u}+\binom{4 t}{t} \quad t \geq 0.5
$$

a) Show that

$$
\boldsymbol{U}(t):=\left(\begin{array}{cc}
t^{-2} & t \\
-2 t^{-2} & t
\end{array}\right)
$$

is a fundamental system of the corresponding homogeneous system of differential equations .
b) Determine the general solution of the inhomogeneous problem.
c) Determine the solution of the corresponding initial value problem with initial values $\boldsymbol{u}(1)=\binom{1}{0}$.

