Differential Equations I for Students of Engineering Sciences Sheet 5, Homework

Exercise 1)

Consider the following fourth-order differential equation

$$u^{(4)}(t) + a_3 u^{'''}(t) + a_2 u^{''}(t) + a_1 u^{\prime}(t) + a_0 u(t) = 0$$
⁽¹⁾

with real coefficients $a_0, a_1, a_2, a_3 \in \mathbb{R}$. For each of the following sets of functions, determine whether they can be (with suitable coefficients $a_0, a_1, a_2, a_3 \in \mathbb{R}$) a fundamental system for the solution space of the differential equation.

Justify your answers.

a) $M_1 := \{u_1(t) = e^t, u_2(t) = e^{5t}, u_3(t) = e^{9t}\}.$

b)
$$M_2 := \left\{ u_1(t) = e^t, \, u_2(t) = e^{it}, \, u_3(t) = e^{2t}, \, u_4(t) = e^{2it} \right\}.$$

c)
$$M_3 := \{u_1(t) = 1, u_2(t) = t, u_3(t) = e^{2t}, u_4(t) = e^{-2t}\}.$$

d)
$$M_4 := \{u_1(t) = e^t, u_2(t) = \sin(2t), u_3(t) = e^{-2it}, u_4(t) = e^{2it}\}.$$

Exercise 2)

Consider the differential equation

$$u''(t) + 9u(t) = b(t)$$

- a) Determine a real representation for the general solution of the corresponding homogeneous differential equation.
- b) Compute the solutions of the differential equation for the inhomogeneities
 - i) $b(t) = 5e^{-t}$, ii) $b(t) = 5\sin(2t)$, iii) $b(t) = 5\sin(3t)$.
- c) Determine the solution of the corresponding initial value problems for the initial values

$$u(0) = u'(0) = 0.$$

In each case check whether the solutions are bounded for $t \ge 0$ and whenever possible provide upper bounds for $|u(t)|, t \ge 0$.

Exercise 3) Somewhat more demanding.

We look for a particular solution u_p of the inhomogeneous differential equation

$$\mathcal{L}_{0}[u] := \sum_{k=0}^{m} a_{k} u^{(k)}(t) = b(t) = b_{0} e^{\alpha t}, \qquad a_{m} = 1, a_{k} \in \mathbb{R}, \ 0 \neq b_{0} \in \mathbb{R}, \ \alpha \in \mathbb{C}$$

a) Prove that the ansatz $u_p(t) = Be^{\alpha t}, B \in \mathbb{C}$ is successful if and only if α is not a root of the characteristic polynomial

$$P_0(\lambda) := \sum_{k=0}^m a_k \lambda^k$$

b) Prove that the ansatz $u_p(t) = Bte^{\alpha t}, B \in \mathbb{C}$ is successful if α is a simple root of the characteristic polynomial

$$P_0(\lambda) := \sum_{k=0}^m a_k \lambda^k.$$

Hint: Use the factorization from page 40 of the lecture.

c) Let now α be a root of the characteristic polynomial with multiplicity $l \in \mathbb{N}, l \geq 2$. Thus

$$P_0(\lambda) = P_l(\lambda)(\lambda - \alpha)^l, \ P_l(\alpha) \neq 0$$

and

$$\mathcal{L}_0[u] := \mathcal{L}_l\left[\left(\frac{d}{dt} - \alpha\right)^l u\right].$$

Prove that $u_p(t) := Bt^l e^{\alpha t}, B \in \mathbb{C}$ is an appropriate ansatz for a fundamental solution of the differential equation.

Hints:

Define P_j and \mathcal{L}_j by

$$P_0(\lambda) = P_j(\lambda)(\lambda - \alpha)^j, \, \mathcal{L}_0[u] = \mathcal{L}_j\left[\left(\frac{d}{dt} - \alpha\right)^j u\right], \qquad j = 0, 1, 2, \dots, l.$$

 α is a root of multiplicity (l-j)- of P_j . In particular it is not a zero of P_l . Show

$$\mathcal{L}_0[Bt^l e^{\alpha t}] = \frac{l!}{(l-j)!} B\mathcal{L}_j[t^{l-j} e^{\alpha t}]$$

by induction and using the factorization method on page 40 of the lecture.

Hand in until: 15.12.2023