Differential Equations I for Students of Engineering Sciences Sheet 5, Homework

Exercise 1)

Consider the following fourth-order differential equation

$$
\begin{equation*}
u^{(4)}(t)+a_{3} u^{\prime \prime \prime}(t)+a_{2} u^{\prime \prime}(t)+a_{1} u^{\prime}(t)+a_{0} u(t)=0 \tag{1}
\end{equation*}
$$

with real coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$. For each of the following sets of functions, determine whether they can be (with suitable coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$) a fundamental system for the solution space of the differential equation.
Justify your answers.
a) $\quad M_{1}:=\left\{u_{1}(t)=e^{t}, u_{2}(t)=e^{5 t}, u_{3}(t)=e^{9 t}\right\}$.
b) $\quad M_{2}:=\left\{u_{1}(t)=e^{t}, u_{2}(t)=e^{i t}, u_{3}(t)=e^{2 t}, u_{4}(t)=e^{2 i t}\right\}$.
c) $\quad M_{3}:=\left\{u_{1}(t)=1, u_{2}(t)=t, u_{3}(t)=e^{2 t}, u_{4}(t)=e^{-2 t}\right\}$.
d) $\quad M_{4}:=\left\{u_{1}(t)=e^{t}, u_{2}(t)=\sin (2 t), u_{3}(t)=e^{-2 i t}, u_{4}(t)=e^{2 i t}\right\}$.

Exercise 2)

Consider the differential equation

$$
u^{\prime \prime}(t)+9 u(t)=b(t)
$$

a) Determine a real representation for the general solution of the corresponding homogeneous differential equation.
b) Compute the solutions of the differential equation for the inhomogeneities
i) $b(t)=5 e^{-t}$,
ii) $b(t)=5 \sin (2 t)$,
iii) $b(t)=5 \sin (3 t)$.
c) Determine the solution of the corresponding initial value problems for the initial values

$$
u(0)=u^{\prime}(0)=0 .
$$

In each case check whether the solutions are bounded for $t \geq 0$ and whenever possible provide upper bounds for $|u(t)|, t \geq 0$.

Exercise 3) Somewhat more demanding.

We look for a particular solution u_{p} of the inhomogeneous differential equation

$$
\mathcal{L}_{0}[u]:=\sum_{k=0}^{m} a_{k} u^{(k)}(t)=b(t)=b_{0} e^{\alpha t}, \quad a_{m}=1, a_{k} \in \mathbb{R}, 0 \neq b_{0} \in \mathbb{R}, \alpha \in \mathbb{C} .
$$

a) Prove that the ansatz $u_{p}(t)=B e^{\alpha t}, B \in \mathbb{C}$ is successful if and only if α is not a root of the characteristic polynomial

$$
P_{0}(\lambda):=\sum_{k=0}^{m} a_{k} \lambda^{k}
$$

b) Prove that the ansatz $u_{p}(t)=B t e^{\alpha t}, B \in \mathbb{C}$ is successful if α is a simple root of the characteristic polynomial

$$
P_{0}(\lambda):=\sum_{k=0}^{m} a_{k} \lambda^{k} .
$$

Hint: Use the factorization from page 40 of the lecture.
c) Let now α be a root of the characteristic polynomial with multiplicity $l \in \mathbb{N}, l \geq 2$. Thus

$$
P_{0}(\lambda)=P_{l}(\lambda)(\lambda-\alpha)^{l}, P_{l}(\alpha) \neq 0
$$

and

$$
\mathcal{L}_{0}[u]:=\mathcal{L}_{l}\left[\left(\frac{d}{d t}-\alpha\right)^{l} u\right] .
$$

Prove that $u_{p}(t):=B t^{l} e^{\alpha t}, B \in \mathbb{C}$ is an appropriate ansatz for a fundamental solution of the differential equation.

Hints:

Define P_{j} and \mathcal{L}_{j} by

$$
P_{0}(\lambda)=P_{j}(\lambda)(\lambda-\alpha)^{j}, \mathcal{L}_{0}[u]=\mathcal{L}_{j}\left[\left(\frac{d}{d t}-\alpha\right)^{j} u\right], \quad j=0,1,2, \ldots, l
$$

α is a root of multiplicity $(l-j)-$ of P_{j}. In particular it is not a zero of P_{l}.
Show

$$
\mathcal{L}_{0}\left[B t^{l} e^{\alpha t}\right]=\frac{l!}{(l-j)!} B \mathcal{L}_{j}\left[t^{l-j} e^{\alpha t}\right]
$$

by induction and using the factorization method on page 40 of the lecture.

Hand in until: 15.12.2023

