Differential Equations I for Students of Engineering Sciences
 Sheet 4, Homework

Exercise 1:

a) Which of the following differential equations for $u(t)$ are exact?
(i) $u+u^{\prime}=0$.
(ii) $(12 t u+3)+6 t^{2} \cdot u^{\prime}=0$.
(iii) $2 t\left(u^{2}-t^{2}-1\right)+2 u u^{\prime}=0$.
(iv) $u^{3}+e^{t}+3 t u^{2} u^{\prime}=0$.
b) For the exact differential equations in Part a) determine a corresponding potential and the general solution.

Exercise 2:

a) Determine the solution to the initial value problem

$$
u^{\prime \prime}(t)+2 t^{3} u^{\prime}(t)=e^{-\frac{t^{4}}{2}} \cdot \sin (2 t) \quad u(0)=2, u^{\prime}(0)=0
$$

Hint: It is sufficient to specify an integral representation of the solution.
b) Solve the initial value problem

$$
u^{\prime \prime}(t)=(u(t))^{-3}=g(u(t)), \quad u(0)=2, u^{\prime}(0)=0 .
$$

Exercise 3:

The speed at which a solid substance dissolves in a solvent is proportional to the still undissolved quantity of the substance $S(t)$ at time t and to the difference between the saturation concentration and the actual concentration of the already dissolved substance. Let
$V:=$ volume $\quad K_{M}:=$ saturation concentration,
$K_{0}:=$ initial concentration $\quad S(t):=$ undissolved quantity of the substance S at time t,
$S_{0}:=S(0)=$ undissolved quantity of the substance S at time zero (initial value),
$K_{0}+\frac{S_{0}-S(t)}{V}=$ concentration of S at time t,
$\gamma:=$ proportionality constant.
a) Describe the diffusion process through a differential equation for $S(t)$.
b) Determine the solution of the initial value problem with data
$S_{0}=10 \mathrm{~kg}, V=100 \mathrm{lit}, K_{M}=0.25 \mathrm{~kg} / \mathrm{lit}, K_{0}=0 \mathrm{~kg} / \mathrm{lit}, \gamma=4 \mathrm{lit} /(\mathrm{kg} \cdot \mathrm{s})$.
Use the substitution known from the lecture for logistic growth $u=S^{-1}$.

Hand in until: 01.12.2023

