Differential Equations I for Students of Engineering Sciences

Sheet 3, Homework

Exercise 1:

a) Determine the solution of the following initial value problem

$$
y^{\prime}(t)=t+t(y(t))^{2} \quad \text { for } t>0, \quad y(0)=1
$$

On which interval $I=\left[0, t^{*}\right)$ is its solution defined?
b) Find the general solution of the following differential equation.

$$
y^{\prime}(t)=e^{-2 t} \cdot \sqrt[3]{y(t)}
$$

c) Which solution results in b) if the initial value $y(0)=1$ is given?
d) Which solution results in b) if the initial value $y(0)=0$ is given?

Exercise 2:

a) Consider the differential equation

$$
y^{\prime}(t)=f(\alpha t+\beta y(t)+\gamma)
$$

with $\alpha, \beta, \gamma \in \mathbb{R}$ and $\alpha+\beta f(\alpha t+\beta y(t)+\gamma) \neq 0$.
Show that with the help of the substitution

$$
u(t):=\alpha t+\beta y(t)+\gamma
$$

it can be transformed into a separable differential.
b) Determine the general solution of the differential equation

$$
y^{\prime}=1+\frac{2}{t-y+4}, \quad \text { for } t-y+4>0
$$

c) Check the solution obtained in Part b) by inserting it into the differential equation.

