Differential Equations I for Students of Engineering Sciences

Sheet 2, Homework

Exercise 1:

We consider the differential equation $y^{\prime}-2 y=4 t$.
a) Show that $y_{p}(t)=-2 t-1$ solves the differential equation.
b) Let \tilde{y} be a second solution of the differential equation.. Show that $y:=\tilde{y}-y_{p}$ solves the corresponding homogeneous differential equation $y^{\prime}-2 y=0$.
c) Compute solutions y_{h} of the corresponding homogeneous differential equation $y_{h}^{\prime}-2 y_{h}=0$, for example with the help of the formula on page 9 of the lecture.
d) From b) it follows that every solution of the inhomogeneous differential equation can be written as sum of a solution of the homogeneous differential equation and y_{p}. Calculate the solution of the initial value problem

$$
y^{\prime}-2 y=4 t, \quad y(0)=2
$$

Exercise 2:

Analogously to the procedure on page 9 of the lecture, prove the representation given on page 11

$$
\begin{equation*}
u(t)=e^{A(t)}\left(B^{*}(t)+C\right), \quad \text { with } A^{\prime}(t)=a(t),\left(B^{*}(t)\right)^{\prime}=e^{-A(t)} \cdot b(t), C \in \mathbb{R} \tag{*}
\end{equation*}
$$

for any solution of the differential equation

$$
u^{\prime}(t)=a(t) \cdot u(t)+b(t)
$$

Where the same assumptions of the lecture apply to a and b.

Hint:
Prove first, by a substitution into the differential equation, that a solution is given by $(*)$.

Conversely, assume that you have a solution u and, analogous to the procedure on page 9 of the lecture, show that $e^{-A(t)} u(t)-B^{*}(t)$ is constant.

Exercise 3:

Determine a solution of the initial value problem

$$
u^{\prime}(t)=\cos (t) \cdot u(t)+t e^{\sin (t)}, \quad u(0)=5
$$

