Differential Equations I for Students of Engineering Sciences Sheet 7, Exercise class

Exercise 1: Consider the boundary value problem

$$
\begin{aligned}
y^{\prime \prime}+2 y^{\prime}+y & =h(x) \quad x \in] 0,1[\\
y(0)-y(1) & =\gamma_{1} \\
\alpha y^{\prime}(0)+2 y(1) & =\gamma_{2} \quad \alpha, \gamma_{1}, \gamma_{2} \in \mathbb{R} .
\end{aligned}
$$

For which values of α is the boundary problem uniquely solvable for arbitrary $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ and arbitrary functions $h(x)$ continuous on the interval $[0,1]$?

Exercise 2:

a) Analyze the stability of the stationary point $(0,0)^{T}$ of the linear system $\dot{\boldsymbol{y}}=A \boldsymbol{y}$.
i) $A=\left(\begin{array}{ll}5 & -2 \\ 6 & -3\end{array}\right)$,
ii) $A=\left(\begin{array}{cc}-2 & 0 \\ 4 & -2\end{array}\right)$,
iii) $A=\left(\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right)$,
iv) $A=\left(\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right)$.
b) For which of the following matrices \boldsymbol{A} can you exclude a stable stationary point (equilibrium point) of the system of differential equations $\boldsymbol{y}(t)=\boldsymbol{A} \boldsymbol{y}(t)$ without knowing the value of $\gamma \in \mathbb{R}$?
i) $\boldsymbol{A}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & \gamma & -1 \\ 0 & 1 & \gamma\end{array}\right)$,
ii) $\boldsymbol{A}=\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & \gamma & -1 \\ 0 & 1 & \gamma\end{array}\right)$,
iii) $\boldsymbol{A}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & \gamma & 1 \\ 0 & 1 & \gamma\end{array}\right)$.

Exercise 3:

The Van-der-Pol equation

$$
\ddot{x}-\epsilon\left(1-x^{2}\right) \dot{x}+x=0 \quad \epsilon \in \mathbb{R}^{+}
$$

describes the behavior of a Van-der-Pol oscillator. It is an oscillator with non-linear damping and self-excitation. For small displacements x the damping is negative, and for large displacements x the damping is positive. There is no exact analytic solution. Analyze the stability of the equilibrium point $x=0$.
Hint: Rewrite the differential equation as an equivalent system.
Dates of classes: 23.01.-27.01.2023

