Differential Equations I for Students of Engineering Sciences Sheet 5, Exercise class

Exercise 1: Determine the solution of the initial value problem

$$
y^{\prime \prime \prime}(t)+4 y^{\prime \prime}(t)+4 y^{\prime}(t)=8 t+4, \quad y(0)=0, y^{\prime}(0)=-1, y^{\prime \prime}(0)=-2 .
$$

Exercise 2:

Consider the differential equation

$$
y^{\prime \prime}(t)+9 y(t)=h(t)
$$

a) Determine the real general solution of the corresponding homogeneous differential equation.
b) Compute the solution of the differential equation with inhomogeneity terms
i) $h(t)=5 e^{-t}$,
ii) $h(t)=5 \sin (2 t)$,
iii) $h(t)=5 \sin (3 t)$.
c) Determine the solution of the corresponding initial value problems for the initial values

$$
y(0)=y^{\prime}(0)=0 .
$$

In each case check whether the solutions are bounded for $t \geq 0$ and whenever possible provide upper bounds for $|y(t)|, t \geq 0$.
d) Use the results of part c) to obtain a solution for

$$
h(t)=2 e^{-t}+4 \sin (2 t) \text { and } y(0)=y^{\prime}(0)=0 .
$$

Dates of classes: 12.12.-16.12.2022

