Differential Equations I for Students of Engineering Sciences Sheet 5, Homework

Exercise 1:

Consider the Euler differential equation

$$
x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)+4 y(x)=0, \quad x>0
$$

a) Does the ansatz $u(x)=x^{r}$ from Sheet 3 lead to a fundamental system?
b) Let u be a solution of Part a). With the help of the reduction ansatz $\tilde{y}(x)=u(x) \cdot z(x)$ determine another solution of the differential equation and provide its general solution.

Exercise 2: Consider the differential equation

$$
y^{\prime \prime \prime \prime}(t)-4 y^{\prime}(t)=e^{2 t} \cdot \sin (t)+e^{-2 t} \cdot \sin (t) .
$$

a) Determine the general solution of the corresponding homogeneous differential equation.
b) Rewrite the differential equation as a system of first order equations and provide a fundamental matrix for this system.
c) Determine the general solution of the inhomogeneous differential equation. Apply the variation of constants method to the corresponding system.
Hint: $\int e^{\alpha t} \cdot \sin (t) d t=\frac{e^{\alpha t}}{\alpha^{2}+1}(\alpha \cdot \sin (t)-\cos (t))+C$.

Hand in until: 16.12.2022

