Differential Equations I for Students of Engineering Sciences Sheet 4, Exercise class

Exercise 1: With the matrices

$$
\boldsymbol{A}^{[1]}=\left(\begin{array}{cc}
2 & 3 \\
0 & 5
\end{array}\right), \quad \boldsymbol{A}^{[2]}=\left(\begin{array}{cc}
5 & \frac{1}{2} \\
0 & 5
\end{array}\right), \quad \boldsymbol{A}^{[3]}=\left(\begin{array}{cc}
5 & 0 \\
0 & 5
\end{array}\right), \quad \boldsymbol{A}^{[4]}=\left(\begin{array}{cc}
5 & 2 \\
-2 & 5
\end{array}\right),
$$

compute real fundamental systems of the solution spaces of

$$
\dot{\boldsymbol{y}}(t)=\boldsymbol{A}^{[k]} \boldsymbol{y}(t), \quad k=1,2,3,4 .
$$

Exercise 2: Rewrite each of the following initial value problems as an initial value problem for a first order system.
a) $x^{2} y^{\prime \prime}(x)-3 x y^{\prime}(x)-4 y(x)=0, \quad y(1)=4, y^{\prime}(1)=4$.
b) $\frac{d^{3}}{d t^{3}} y=2 y-\dot{y}+2 \ddot{y}+3, \quad y(0)=7, \dot{y}(0)=0, \ddot{y}(0)=5$.

Exercise 3: In this exercise a little computation might be necessary in part b). Parts a) and c) can be answered without any calculation!
a) Do the functions

$$
x_{1}(t)=e^{t}, \quad x_{2}(t)=t e^{t}, \quad x_{3}(t)=e^{2 t}, \quad x_{4}(t)=e^{3 t}
$$

define a fundamental system for the space of solutions of the differential equation

$$
\frac{d^{3}}{d t^{3}} x(t)-6 \ddot{x}(t)+11 \dot{x}(t)-6 x(t)=0 ?
$$

b) The functions

$$
\boldsymbol{x}^{[1]}(t)=\left(\begin{array}{c}
t^{2}-2 t \\
2(t-1) \\
2
\end{array}\right), \quad \boldsymbol{x}^{[2]}(t)=\left(\begin{array}{c}
1-t \\
-1 \\
0
\end{array}\right), \quad \boldsymbol{x}^{[3]}(t)=\left(\begin{array}{c}
t^{2}-2 \\
2 t \\
2
\end{array}\right)
$$

are solutions of the system

$$
\dot{\boldsymbol{x}}(t)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \boldsymbol{x}(t) \text {. }
$$

Do they also constitude a fundamental system?
c) Do the functions

$$
x_{1}(t)=e^{t}, \quad x_{2}(t)=e^{2 t}, \quad x_{3}(t)=e^{i t}
$$

define a fundamental system for the space of solutions of the differential equation

$$
\frac{d^{3}}{d t^{3}} x(t)+a_{2} \ddot{x}(t)+a_{1} \dot{x}(t)+a_{0} x(t)=0 \quad \text { with real coefficients } a_{0}, a_{1}, a_{2} \in \mathbb{R} ?
$$

Justify your answers!
Dates of classes: 28.11.-02.12.2022

