Differential Equations I for Students of Engineering Sciences

 Sheet 3, Exercise class

 Sheet 3, Exercise class}

Exercise 1:

Consider the homogeneous Euler differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+a_{1} x y^{\prime}(x)+a_{0} y(x)=0 \tag{*}
\end{equation*}
$$

with real coefficients a_{k} and $x>0$.
a) Let y_{-}and y_{+}be two different solutions of the differential equation $(*)$. Show that every real or complex linear combination of y_{-}and y_{+}solves the differential equation $(*)$ as well.
b) Using the Ansatz $y(x)=x^{r}$ determine two real linearly independent solutions for each of the following second order differential equations.
i) $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$,
ii) $x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0$.

If you obtain complex solutions, note that due to part a) the real and imaginary parts of the complex solution are real solutions of the differential equations.

Exercise 2:

a) Using the substitution $u(t):=\dot{y}(t)$ and subsequent separation of variables determine the general solution of the following second order differential equation.

$$
\ddot{y}(t) \sin (t)=\cos (t) \dot{y}(t)+\cos (t)
$$

Insert it into the differential equation, to verify that you have actually found a solution for every $t \in \mathbb{R}$.
b) Consider the differential equation from Part a).
(i) Determine the solution of the corresponding initial value problem with initial values

$$
y\left(\frac{\pi}{6}\right)=\frac{\pi}{3}, \quad \dot{y}\left(\frac{\pi}{6}\right)=-1
$$

(ii) Now consider the initial values

$$
y(0)=0, \quad \dot{y}(0)=0
$$

and

$$
y(0)=0, \quad \dot{y}(0)=-1
$$

respectively. Can you determine unique solutions here as well?
Are your results consistent with the existence and uniqueness theorem from the lecture?

Dates: 14.11.-18.11.2022

