Differential Equations I for Students of Engineering Sciences

Sheet 3, Exercise class

Exercise 1:

Consider the homogeneous Euler differential equation

$$x^{2}y''(x) + a_{1}xy'(x) + a_{0}y(x) = 0, \qquad (*)$$

with real coefficients a_k and x > 0.

- a) Let y_{-} and y_{+} be two different solutions of the differential equation (*). Show that every real or complex linear combination of y_{-} and y_{+} solves the differential equation (*) as well.
- b) Using the Ansatz $y(x) = x^r$ determine two real linearly independent solutions for each of the following second order differential equations.

i)
$$x^2y'' - 3xy' + 3y = 0$$
, ii) $x^2y'' - 3xy' + 5y = 0$.

If you obtain complex solutions, note that due to part a) the real and imaginary parts of the complex solution are real solutions of the differential equations.

Exercise 2:

a) Using the substitution $u(t) := \dot{y}(t)$ and subsequent separation of variables determine the general solution of the following second order differential equation.

$$\ddot{y}(t)\sin(t) = \cos(t)\dot{y}(t) + \cos(t).$$

Insert it into the differential equation, to verify that you have actually found a solution for every $t \in \mathbb{R}$.

- b) Consider the differential equation from Part a).
 - (i) Determine the solution of the corresponding initial value problem with initial values

$$y(\frac{\pi}{6}) = \frac{\pi}{3}, \qquad \dot{y}(\frac{\pi}{6}) = -1.$$

(ii) Now consider the initial values

$$y(0) = 0, \qquad \dot{y}(0) = 0,$$

and

$$y(0) = 0, \qquad \dot{y}(0) = -1,$$

respectively. Can you determine unique solutions here as well? Are your results consistent with the existence and uniqueness theorem from the lecture?

Dates: 14.11.-18.11.2022