Differential Equations I for Students of Engineering Sciences
 Sheet 3, Homework

Exercise 1:

a) Determine a solution $y:[0,1[\rightarrow \mathbb{R}$ of the initial value problem

$$
\ddot{y}(t)=\dot{y}(t)(y(t)+1), \quad y(0)=1, \quad \dot{y}(0)=2 .
$$

b) Determine all radial symmetric solutions $u=u(r), r=\sqrt{x^{2}+y^{2}}$ of the following Poisson equation in \mathbb{R}^{2}

$$
\Delta u=1
$$

Note: In Analysis III you derived the representation of the Laplace operator in polar coordinates

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}
$$

Radially symmetrical means independence of the angle ϕ.
c) We are looking for the stationary (i.e. time-independent) and radially symmetrical temperature distribution in a homogeneous circular disc with inner radius $r_{i}=1$, outer radius $r_{a}=2$, internal temperature $T_{i}=20$ and external temperature $T_{a}=15$.
To this end determine a solution of $\Delta T(x, y)=0$
with

$$
T(x, y)=20 \quad \text { for } \sqrt{x^{2}+y^{2}}=1 \text { and } T(x, y)=15 \quad \text { for } \sqrt{x^{2}+y^{2}}=2
$$

Exercise 2:

a) Determine a solution of the initial value problem

$$
y^{\prime}+3 y+y^{\frac{3}{4}}=0, \quad y(0)=1
$$

b) Show that the solution is uniquely determined in the interval $\left[0, \frac{4}{3} \ln (4)\right]$.
c) Provide a second solution in an interval $[0, L]$ with $L>\frac{4}{3} \ln (4)$.

