Differential Equations I for Students of Engineering Sciences

Sheet 2, Homework

Exercise 1:

a) Consider the differential equation

$$
y^{\prime}(x)=f(\alpha x+\beta y(x)+\gamma)
$$

with $\alpha, \beta, \gamma \in \mathbb{R}$ and $\alpha+\beta f(\alpha x+\beta y(x)+\gamma) \neq 0$,
show that with the help of the substitution

$$
u(x):=\alpha x+\beta y(x)+\gamma
$$

it can be transformed into a differential equation with separable variables.
b) Compute the solution of the initial value problem

$$
y^{\prime}=\exp (x-2 y)+0.5, \quad y(0)=0
$$

c) Check the solution obtained in Part b) by inserting it into the differential equation.

Exercise 2:

Determine which of the following differential equations are separable, linear, Bernoulli or a similarity differential equation. If applicable, determine the respective substitution which transforms the differential equation into a separable variables or a linear differential equation.
Which are the new differential equations obtained by the substitutions?
Note: You do not have to solve the differential equations, but you can do so if you like to!
a) $\left(1+e^{2 t}\right) y^{\prime}=-2 e^{2 t} y$
b) $\cos (t) y^{\prime}+\sin (t) y=-\cos ^{2}(t) y$
c) $y-\frac{1}{t}-\frac{1}{y} y^{\prime}=0$
d) $y^{\prime}=2 t\left(2 t^{2} y^{2}-1\right) y$
e) $y-t y^{\prime}=\frac{t^{3}}{y^{2}}$

