Fachbereich Mathematik der Universität Hamburg Prof. Dr. J. Behrens, Dr. H. P. Kiani, E. Ficola Winter Term 2022/23

Differential Equations I for Students of Engineering Sciences

Sheet 1, Exercise class

Exercise:

The position of a pendulum (for example a cylinder hanging on a spring) oscillating in a viscous fluid can be described by a mathematical equation. We denote by y(t) the displacement from the equilibrium position. In order to simplify the model, we may assume that only:

- the reaction force, proportional to the displacement $F(t) = -D \cdot y(t), D \ge 0$ and
- the damping force, proportional to the velocity $\tilde{F}(t) = -\mu \cdot y'(t), \ \mu \ge 0$

act on the cylinder.

Newton's law of motion states that:

mass (m) \cdot acceleration (y''(t)) = \sum of all acting forces.

- a) Which differential equation would thus describe a damped pendulum?
- b) Which is the order of the differential equation of part a)?
- c) What is the differential equation from a) in case of an undamped motion ($\mu = 0$) of a cylinder of mass $m = 50 \, kg$ when $D = 200 \, N/m$?
 - (i) Show that the function $c_1 \sin(2t) + c_2 \cos(2t)$ with arbitrary real constants c_1 , c_2 solves this differential equation.
 - (ii) Which solution(s) do we get when setting as initial speed y'(0) = 0 m/s?
 Can you determine the position of the cylinder at a given time (for example t = 10)?
 - (iii) Which solution(s) do we get if we set additionally an initial displacement of y(0) = 0.5 m?
- d) Let us now look for the solutions of the differential equation

 $200 \cdot y''(t) = -40 \cdot y'(t) - 202 \cdot y(t) \, .$

With the help of the ansatz $y(t) = ke^{\lambda t}$, $k, \lambda \in \mathbb{C}$ constant, determine solutions of the differential equation.

Dates: 17.10.-21.10.2022