Differential Equations I

Linear Systems of ODEs – Matrix Exponential Solution Linear ODE of order n

Chapter 6.7-6.8

Recap: Linear System of ODEs of Order 1

Definition: (Linear System of ODEs of 1^{th} Order)

A linear system of ODEs of 1^{th} order is an equation $y'(x) = A(x)y(x) + g, \quad A(x) = [a_{tt}/x]_{t_t=1,\dots,n}$ where the a_{tt}/x are functions, and y and g column vectors of n components, depending on x.

If g or 0, then the system is called homogeneous, otherwise inhomogeneous, eitherwise inhomogeneous, eitherwise inhomogeneous, eitherwise inhomogeneous, otherwise inhomo

Proposition: (Solution from Generalized Eigenvektor) Let λ be eigen value of the $n \times n$ -matrix. A with algebraic multiplicity σ and v_1, \dots, v_σ linearly independent solutions of the linear system $(A - \lambda E)^\sigma \mathbf{v} = 0.$

Then $\mathbf{y}_k = e^{\lambda k} \sum_{i=0}^{\sigma-1} \frac{x^j}{j!} (A - \lambda E)^j \mathbf{v}_k \quad (k=1,\dots,\sigma)$

are linearly independent solutions of the 1st order system of ODEs $\mathbf{y}' = A\mathbf{y}$.

Proposition: (Solvability of linear systems of 1^{th} order ODEs) Let the elements $a_{ij}(y)$ of matrix A(y) and the components of g be continuous in intervall [a,b]. Further, let $x_0 \in [a,b]$ and $\mathbf{y}_0 = (y_{01},\ldots,y_{0n})^{\top}$ be given arbitrarily. Then the initial value problem

y' = A(x)y + g, $y(x_0) = y_0$,

has a unique solution on]a,b[.

Proposition: (Solution of homogeneous linear systems of ODEs of 1^{st} Order) If the elements $a_{ij}(x)$ of matrix A(x) are continuous in [a,b], then the homogeneous system

y' = A(x)y

has exactly n linear independent solutions on]a,b[.

 $\begin{array}{ll} \textbf{Proposition: (Wronski Test)} \\ \textbf{Let } \mathbf{y}_1, \dots, \mathbf{y}_n \text{ be solutions of the system } \mathbf{y}' = A(x)\mathbf{y} \text{ on }]a,b[.\\ \textbf{If } a_{ij}(x) \text{ continuous in }]a,b[.\\ \textbf{then} \end{array}$

1. $W(x) \equiv 0$ or $W(x) \neq 0$ for all $x \in]a,b[$.

2. The solutions $\mathbf{y}_1,\dots,\mathbf{y}_n$ form a fundamental system on]a,b[if and only if (iff) $W(x)\neq 0.$

Proposition: (Solution of system of ODEs with constant coefficients) Let $A=(a_0)$ a constant $n\times n$ -matrix with $a_{ij}\in\mathbb{R}$, λ an eigen value (EVa) of A with corresponding eigen vector (EVc) \mathbf{v} . Then

 $y = e^{\lambda s}$

is a solution of the homogeneous system of ODEs of $1^{\rm st}$ order $\mathbf{y}'=A\mathbf{y}.$

If A has n pairwise different EVa $\lambda_1,\dots,\lambda_n$ with corresponding EVc $\mathbf{v}_1,\dots,\mathbf{v}_n$ the solutions $\mathbf{y}_i=e^{\lambda_ix}\mathbf{v}_i,\quad i=1,\dots,n$

form a fundamental system. By linear combination

 $\mathbf{y} = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i$

3.

Definition: (Linear System of ODEs of 1st Order)
A linear system of ODEs of 1st order is an equation

$$\mathbf{y}'(x) = A(x)\mathbf{y}(x) + \mathbf{g}, \quad A(x) = [a_{ij}(x)]_{i,j=1,...,n}$$

where the $a_{ij}(x)$ are functions, and y and g column vectors of n components, depending on x.

If $g \equiv 0$, then the system is called homogeneous, otherwise inhomogeneous.

Remarks:

- Differential equations of order k can be reduced to systems of k equations of order 1! Idea: $x_1 = y$, $x_2 = y'$, $x_3 = y''$, etc.
- If n=1, then we have a linear ODE.

Proposition: (Solvability of linear systems of 1^{st} order ODEs) Let the elements $a_{ij}(x)$ of matrix A(x) and the components of \mathbf{g} be continuous in intervall]a,b[. Further, let $x_0\in]a,b[$ and $\mathbf{y}_0=(y_{01},\ldots,y_{0n})^{\top}$ be given arbitrarily. Then the initial value problem

$$\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}, \quad \mathbf{y}(x_0) = \mathbf{y}_0,$$

has a unique solution on]a, b[.

Proposition: (Solution of homogeneous linear systems of ODEs of $1^{\rm st}$ Order) If the elements $a_{ij}(x)$ of matrix A(x) are continuous in]a,b[, then the homogeneous system

$$\mathbf{y}' = A(x)\mathbf{y}$$

has exactly n linear independent solutions on]a, b[.

Proposition: (Wronski Test)

Let y_1, \ldots, y_n be solutions of the system y' = A(x)y on a_i, b . If $a_{ij}(x)$ continuous in a_i, b , then

- 1. $W(x) \equiv 0$ or $W(x) \neq 0$ for all $x \in]a, b[$.
- 2. The solutions y_1, \ldots, y_n form a fundamental system on a, b if and only if (iff) $W(x) \neq 0$.

Proposition: (Solution of system of ODEs with constant coefficients) Let $A=(a_{ij})$ a constant $n\times n$ -matrix with $a_{ij}\in\mathbb{R}$, λ an eigen value (EVa) of A with corresponding eigen vector (EVc) \mathbf{v} . Then

$$\mathbf{y} = e^{\lambda x} \mathbf{v}$$

is a solution of the homogeneous system of ODEs of 1st order y' = Ay.

If A has n pairwise different EVa $\lambda_1, \ldots, \lambda_n$ with corresponding EVc $\mathbf{v}_1, \ldots, \mathbf{v}_n$, the solutions

$$\mathbf{y}_i = e^{\lambda_i x} \mathbf{v}_i, \quad i = 1, \dots, n$$

form a fundamental system. By linear combination

$$\mathbf{y} = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i$$

all solutions of the homogeneous system of ODEs are given.

Proposition: (Solution from Generalized Eigenvektor)

Let λ be eigen value of the $n \times n$ -matrix A with algebraic multiplicity σ and $\mathbf{v}_1, \dots, \mathbf{v}_{\sigma}$ linearly independent solutions of the linear system

$$(A - \lambda E)^{\sigma} \mathbf{v} = \mathbf{0}.$$

Then

$$\mathbf{y}_k = e^{\lambda k} \sum_{j=0}^{\sigma-1} \frac{x^j}{j!} (A - \lambda E)^j \mathbf{v}_k \quad (k = 1, \dots, \sigma)$$

are linearly independent solutions of the 1st order system of ODEs y' = Ay.

Matrix Exponential Solution

Preliminary Remark: (Exponential Solution)

- $\bullet \ \ \text{For linear ODE} \ y'=ay \ \text{the solution is} \ y(x)=e^{ax}y(0).$
- Aim: Transfer this solution to a system

$$y' = Ay$$
.

Utilize the Matrix Exponential Function

$$e^B = \sum_{k=0}^{\infty} \frac{1}{k!} B^k.$$

- ullet e^B is a $(n \times n)$ -matrix, if B is one.
- This sequence converges!

$$\mathbf{y}' = A\mathbf{y},$$

where

$$e^{xA} = \sum_{k=0}^{\infty} \frac{x^k}{k!} A^k.$$

Preliminary Remark: (Exponential Solution)

- For linear ODE y' = ay the solution is $y(x) = e^{ax}y(0)$.
- Aim: Transfer this solution to a system

$$\mathbf{y}' = A\mathbf{y}.$$

Utilize the Matrix Exponential Function

$$e^B = \sum_{k=0}^{\infty} \frac{1}{k!} B^k.$$

- \bullet e^B is a $(n \times n)$ -matrix, if B is one.
- This sequence converges!

Summarizing: (Matrix Exponential Solution)

The mapping $\mathbf{y}(x) = e^{xA}\mathbf{y}(0)$ is solution of the ODE system

$$\mathbf{y}' = A\mathbf{y},$$

where

$$e^{xA} = \sum_{k=0}^{\infty} \frac{x^k}{k!} A^k.$$

Inhomogeneous Systems of Order 1

- Fundamental system of homogeneous system: $\mathbf{y}_1,\dots,\mathbf{y}_n$ Solution of homogeneous system: $\mathbf{y}_h=c_1\mathbf{y}_1+\dots+c_n\mathbf{y}_n$
- Sources or nonegarious system: $y_n=(y_1+\cdots+c_ny_n)$ Some solution of inhomogeneous system: y_p Then each solution of the inhomogeneous linear system is of the form $y=y_p+c_1y_1+\cdots+c_ny_n=y_p+y_n$ with constants $c_1,\dots,c_n\in\mathbb{R}[\mathbb{C}]$

Proposition: (Variation of constants for systems) Let:

- $\mathbf{y}_1, \dots, \mathbf{y}_n$ Fundamental system on]a, b[,
- Matrix $Y(x) = [\mathbf{y}_1 \dots \mathbf{y}_n]$,
- \bullet Inhomogeneous system $\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}$ with g component-wise continuous.

$$y_p = Y(x) \cdot c(x)$$

is particular solution of the inhomogeneous system, where $\mathbf{c}(x) = \int \mathbf{c}'(x) \; dx$ and $\mathbf{c}'(x) = (c_1'(x), \dots, c_n'(x))^\top$ solution of the system of equations

 $Y(x) \cdot \mathbf{c}'(x) = \mathbf{g}.$

Preliminary Remark: Solve in two steps:

- 1. Solve homogeneous system
- 2. Determine particular solution

Proposition: (Solution structure of inhomogeneous system) Let:

- Inhomogeneous linear system: $\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}$
- Homogeneous lineare system: $\mathbf{y}' = A(x)\mathbf{y}$
- Fundamental system of homogeneous system: $\mathbf{y}_1, \dots, \mathbf{y}_n$
- Solution of homogeneous system: $\mathbf{y}_h = c_1 \mathbf{y}_1 + \cdots + c_n \mathbf{y}_n$
- Some solution of inhomogeneous system: y_p

Then each solution of the inhomogeneous linear system is of the form

$$\mathbf{y} = \mathbf{y}_p + c_1 \mathbf{y}_1 + \dots + c_n \mathbf{y}_n = \mathbf{y}_p + \mathbf{y}_h$$

with constants $c_1, \ldots, c_n \in \mathbb{R}|\mathbb{C}$.

Proposition: (Variation of constants for systems) Let:

- ullet $\mathbf{y}_1,\ldots,\mathbf{y}_n$ Fundamental system on]a,b[,
- Matrix $Y(x) = [\mathbf{y}_1 \dots \mathbf{y}_n]$,
- ullet Inhomogeneous system $\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}$ with g component-wise continuous.

Then

$$\mathbf{y}_p = Y(x) \cdot \mathbf{c}(x)$$

is particular solution of the inhomogeneous system, where $\mathbf{c}(x) = \int \mathbf{c}'(x) \ dx$ and $\mathbf{c}'(x) = (c_1'(x), \dots, c_n'(x))^{\top}$ solution of the system of equations

$$Y(x) \cdot \mathbf{c}'(x) = \mathbf{g}.$$

Linear ODEs of Order n

Definition: (Linear ODE of n^{th} order)

A linear differential equation of n^{th} order is given by

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = g(x),$$

with $a_0(x), \ldots, a_{n-1}(x), g(x)$ defined on]a, b[.

Remark: (Linear ODE of $n^{\rm th}$ order – system of $1^{\rm st}$ order) Introduce functions

$$y_1 := y, \ y_2 := y', \dots, y_n = y^{(n-1)}$$

and obtain system of $1^{\rm st}$ order with n equations:

$$y'_1 = y_2$$

 $y'_2 = y_3$
 \vdots
 $y'_{n-1} = y_n$
 $y'_n = -a_0(x)y_1 - a_a(x)y_2 - \dots - a_{n-1}(x)y_n + g(x).$

Remark: With

$$A(x) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0(x) & -a_1(x) & -a_2(x) & \dots & -a_{n-1}(x) \end{pmatrix}, \quad \mathbf{g}(x) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ g(x) \end{pmatrix} \quad \text{and } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix}$$

the linear ODE of n^{th} order corresponds to the system

$$\mathbf{y}' = A(x)\mathbf{y} + \mathbf{g}(x).$$

Remark: (Solvability)

Consider homogeneous case: g(x) = 0. Then y(x) is solution of the linear ODE of n^{th} order, if

$$\mathbf{y}(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix} = \begin{pmatrix} y(x) \\ y'(x) \\ \vdots \\ y^{(n-1)}(x) \end{pmatrix}$$

is solution of the homogeneous system $\mathbf{y}' = A(x)\mathbf{y}$. If initial conditions

$$y(\xi) = \eta_0, \ y'(\xi) = \eta_1, \dots, y^{(n-1)}(\xi) = \eta_{n-1}$$

are given for the equation of n^{th} order, then

$$\mathbf{y}(\xi) = (\eta_0, \eta_1, \dots, \eta_{n-1})^{\top}$$

are the initial conditions for the system.

Definition: (Fundamental system of linear ODE) Let

- ullet y_1,\ldots,y_n solutions of the homogeneous n^{th} order OCE on]a,b[,
- $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ coefficients, and
- let hold: for all $x \in]a,b[$ if

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

then $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Then y_1, \ldots, y_n is called fundamental system of the homogeneous ODE of n^{th} order.

Remark: Differentiation (for k = 1, 2, ..., n - 1) of

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$

yields the linear system

$$\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & & y'_n \\ \vdots & & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \mathbf{0}.$$

This system has only a trivial solution, iff the determinant of the coefficient matrix does not vanish.

Definition: (Wronski-Determinant of n solutions of linear ODE of n^{th} order) Let y_1, \ldots, y_n on]a, b[be arbitrary solutions of the homogeneous ODE of n^{th} order. Then

$$W(x) := \det egin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & & y'_n \\ \vdots & & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix}$$

is called Wronski-Determinant of these n solutions.

Remark: It can be shown:

$$W(x) \neq 0 \ \forall x \in]a, b[\Leftrightarrow \exists x_0 \in]a, b[: W(x_0) \neq 0.$$

Proposition: (Solvability of linear ODE n^{th} order) Let $a_i(x)$, i = 0, ..., n-1 and g(x) continuous functions on]a, b[.

1. Then there is a fundamental system y_1, \ldots, y_n on]a, b[of

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = 0$$

and each solution $y_h(x)$ of this homogeneous ODE has the form

$$y_h(x) = c_1 y_1(x) + \dots + c_n y_n(x)$$

with suitable coefficients c_1, \ldots, c_n .

- 2. Each n solutions of the homogeneous ODE form exactly one fundamental system, if $W(x) \neq 0$ for all $x \in]a,b[$.
- 3. Let $y_p(x)$ for $x \in]a,b[$ a particular solution of

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_0(x)y = g(x)$$

If y_1, \ldots, y_n is fundamental system of the homogeneous ODE, then by

$$y(x) = y_p(x) + c_1 y_1(x) + \dots + c_n y_n(x), \quad c_i \in \mathbb{R}$$

all solutions of the linear inhomogeneous ODE of $n^{\rm th}$ order are given.

4. If $\xi \in]a,b[$ and $\eta_0,\ldots,\eta_{n-1} \in \mathbb{R}$, then there is exactly one solution y(x) of the inhomogeneous ODE, which fulfills the initial conditions

$$y(\xi) = \eta_0, \ y'(\xi) = \eta_1, \dots, y^{(n-1)}(\xi) = \eta_{n-1}.$$

The solution exists in the whole interval]a, b[.

