5 puer ||all=1 Of = 6 (x,x) -(x,0)2 olx = = f ((x-x3+x3, x-x3+x3) - (x-x3+x3, a) d< = = p ((x-x3, x-x3) - (x-x3, a3)61, +p (45, a3)62, + +9 \(\(\times_{\text{X-X_S}}(\times_{\text{X}}) + \(\times_{\text{X}}(\times_{\text{X-X_S}}) - 2 \(\times_{\text{X-X_S}}(\times_{\text{X}}) \(\times_{\text{X}}(\times_{\text{X}}) \) = Os + md2 + g((x-x)d2,xs) + --

Kapitel 3. Integralrechnung mehrerer Variabler

3.2 Kurvenintegrale

Für eine stückweise C^1 –Kurve $\mathbf{c}:[a,b]\to D$, $D\subset\mathbb{R}^n$, und eine stetige skalare Funktion $f:D\to\mathbb{R}$ hatten wir das Kurvenintegral erster Art definiert durch

$$\int_{\mathbf{c}} f(\mathbf{x}) ds := \int_{a}^{b} f(\mathbf{c}(t)) \|\dot{\mathbf{c}}(t)\| dt$$

wobei $\|\cdot\|$ die euklidische Norm bezeichnet.

Erweiterung: Kurvenintegrale über vektorwertige Funktionen, d.h.

$$\int_{\mathbf{c}} \mathbf{f}(\mathbf{x}) d\mathbf{x} := ?$$

C=241

Anwendung: Ein Massenpunkt bewegt sich entlang $\mathbf{c}(t)$ in einem Kraftfeld $\mathbf{f}(\mathbf{x})$.

Frage: Welche physikalische Arbeit muss entlang der Kurve geleistet werden?

Kurvenintegrale zweiter Art.

Definition: Für ein stetiges Vektorfeld, $\mathbf{f}:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$ offen, und eine stückweise \mathcal{C}^1 -Kurve $\mathbf{c}:[a,b]\to D$ definieren wir das Kurvenintegral zweiter Art durch

$$\int_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} := \int_{a}^{b} \langle \mathbf{f}(\mathbf{c}(t), \dot{\mathbf{c}}(t)) \rangle dt$$

Herleitung: Approximiere die Kurve durch einen Streckenzug mit Ecken $\mathbf{c}(t_i)$, wobei

$$Z = \{a = t_0 < t_1 < \cdots < t_m = b\}$$

eine Zerlegung des Intervalls [a, b] ist.

Dann gilt für die in einem Kraftfeld f(x) entlang der Kurve c(t) geleistete Arbeit die Näherungsformel:

$$A pprox \sum_{i=0}^{m-1} \langle \mathbf{f}(\mathbf{c}(t_i)), \mathbf{c}(t_{i+1}) - \mathbf{c}(t_i) \rangle$$

Fortsetzung der Herleitung.

Für eine Folge von Zerlegungen Z mit $||Z|| \rightarrow 0$ konvergiert die linke Seite gegen das oben definierte Kurvenintegral zweiter Art.

Bemerkung: Für eine geschlossene Kurve $\mathbf{c}(t)$, d.h. $\mathbf{c}(a) = \mathbf{c}(b)$, schreibt man das Kurvenintegral auch als

$$\oint_c \mathbf{f}(\mathbf{x}) \, d\mathbf{x}$$

Eigenschaften des Kurvenintegrals zweiter Art.

• Linearität:

$$\int_{c} (\alpha \mathbf{f}(\mathbf{x}) + \beta \mathbf{g}(\mathbf{x})) d\mathbf{x} = \alpha \int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \beta \int_{c} \mathbf{g}(\mathbf{x}) d\mathbf{x}$$

• Es gilt:

$$\int_{-c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = -\int_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x},$$

wobei $(-\mathbf{c})(t) := c(b+a-t)$, $a \le t \le b$, den inversen Weg bezeichnet.

Es gilt

$$\int_{c_1+c_2} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c_1} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \int_{c_2} \mathbf{f}(\mathbf{x}) d\mathbf{x}$$

wobei $\mathbf{c}_1 + \mathbf{c}_2$ den aus \mathbf{c}_1 und \mathbf{c}_2 zusammengesetzten Weg bezeichnet, sodass der Endpunkt von \mathbf{c}_1 der Anfangspunkt von \mathbf{c}_2 ist.

+:0->6 C:001-3-061 (-c)(t) = c(a+b+t)(-C) (b, -)do, (-c)(a+b-+)=c(+) (-c)(a+b-+) =- c(6+5-+) $= -\int \left\langle f\left(\frac{1}{2}\left(a+b-t\right)\right), \left(-\frac{1}{2}\left(a+b-t\right)\right) dt = 0$ = GNE10 $\left(f(GCIGI)(GCI(F))\right)$ dF =

Weitere Eigenschaften des Kurvenintegrals zweiter Art.

- Das Kurvenintegral zweiter Art ist parametrisierungsinvariant.
- Es gilt

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{a}^{b} \langle \mathbf{f}(\mathbf{c}(t)), \mathbf{T}(t) \rangle \| \dot{\mathbf{c}}(t) \| dt = \int_{c} \langle \mathbf{f}, \mathbf{T} \rangle ds$$

mit dem Tangenten-Einheitsvektor $\mathbf{T}(t) := \frac{\mathbf{c}(t)}{\|\dot{\mathbf{c}}(t)\|}$.

Formale Schreibweise:

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c} \sum_{i=1}^{n} f_{i}(\mathbf{x}) dx_{i} = \sum_{i=1}^{n} \int_{c} f_{i}(\mathbf{x}) dx_{i}$$

mit

$$\int_{C} f_{i}(\mathbf{x}) dx_{i} := \int_{a}^{b} f_{i}(\mathbf{c}(t)) \dot{c}_{i}(t) dt$$

$$\begin{aligned}
& \int f(x) dx = \int f(x) | f(x)| | f(x)| dx = \\
& \int f(x)| = f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| = f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)| f(x)| f(x)| f(x)| f(x)| dx = \\
& \int f(x)| f(x)$$

$$f(xy) = \{0\} = Px$$

$$q(x)x = \{0\} = Px$$

$$f(x)x = P$$

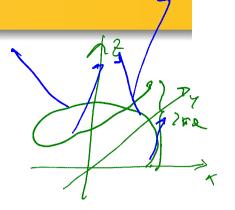
Beispiel.

Für $\mathbf{x} \in \mathbb{R}^3$ sei

$$f(x) := (-y, x, z^2)^T$$

$$\mathbf{c}(t) := (\cos t, \sin t, at)^T \quad \text{mit } 0 \le t \le 2\pi$$

$$\mathsf{mit}\ 0 \le t \le 2\pi$$



Dann berechnet man

$$\int_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{C} (-ydx + xdy + z^{2}dz)$$

$$= \int_0^{2\pi} (-\sin t)(-\sin t) + \cos t \cos t + a^2 t^2 a) dt$$

$$= \int_0^{2\pi} (1+a^3t^2) \, dt$$

$$= 2\pi + \frac{a^3}{3}(2\pi)^3$$

Die Zirkulation eines Feldes längs einer Kurve.

Definition: Ist $\mathbf{u}(\mathbf{x})$ ein Geschwindigkeitsfeld eines strömenden Mediums, so nennt man das Kurvenintegral $\oint_c \mathbf{u}(\mathbf{x}) d\mathbf{x}$ entlang einer geschlossenen Kurve auch die Zirkulation des Feldes $\mathbf{u}(\mathbf{x})$.

Beispiel: Für das Feld $\mathbf{u}(x,y) = (y,0)^T \in \mathbb{R}^2$ erhält man längs der Kurve $\mathbf{c}(t) = (r\cos t, 1 + r\sin t)^T$, $0 \le t \le 2\pi$ die Zirkulation

$$\int_{c}^{2\pi} \int_{c}^{r_{o}} \int_{c}^{r_{o}} \int_{c}^{r_{o}} \mathbf{u}(\mathbf{x}) d\mathbf{x} = \int_{0}^{2\pi} (1 + r \sin t)(-r \sin t) dt$$
$$= \int_{0}^{2\pi} (-r \sin t - r^{2} \sin^{2} t) dt$$

$$= \left[r\cos t - \frac{r^2}{2}(t-\sin t\cos t)\right]_0^{2\pi} = -\pi r^2$$

Wirbelfreie Vektorfelder.

Definition: Ein stetiges Vektorfeld $\mathbf{f}(\mathbf{x})$, $\mathbf{x} \in D \subset \mathbb{R}^n$, heißt wirbelfrei, falls dessen Kurvenintegral längs aller geschlossenen stückweise C^1 –Kurven $\mathbf{c}(t)$ in D verschwindet, d.h.

$$\oint_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} = 0 \qquad \text{für alle geschlossenen } \mathbf{c}.$$

Bemerkung: Ein Vektorfeld ist genau dann wirbelfrei, wenn der Wert des Kurvenintegrals $\int_c \mathbf{f}(\mathbf{x}) d\mathbf{x}$ nur vom Anfangs– und Endpunkt des Weges, jedoch nicht vom konkreten Verlauf der Kurve \mathbf{c} abhängt. In diesem Fall nennt man das Kurvenintegral wegunabhängig.

Frage: Welche Kriterien für das Vektorfeld f(x) garantieren die Wegunabhängigkeit des Kurvenintegrals?

Col 1

 $= \int f(x) dx = 0$ C + (-d)W(2bolfmen)

Wegmashenji

windolfres

Zusammenhängende Mengen.

Definition: Eine Teilmenge $D \subset \mathbb{R}^n$ heißt zusammenhängend, falls je zwei Punkte in D durch eine stückweise C^1 -Kurve verbunden werden können:

$$\forall \mathbf{x}^0, \mathbf{y}^0 \in D : \exists \mathbf{c} : [a, b] \to D : \mathbf{c}(a) = \mathbf{x}^0 \land \mathbf{c}(b) = \mathbf{y}^0$$

Eine offene und zusammenhängende Menge $D \subset \mathbb{R}^n$ nennt man auch ein Gebiet in \mathbb{R}^n .

Bemerkung: Eine **offene** Menge $D \subset \mathbb{R}^n$ ist genau dann **nicht** zusammenhängend, wenn es **disjunkte**, offene Mengen $U_1, U_2 \subset \mathbb{R}^n$ gibt mit

$$U_1 \cap D \neq \emptyset$$
, $U_2 \cap D \neq \emptyset$, $D \subset U_1 \cup U_2$

Nicht zusammenhängende offene Mengen sind also – im Gegensatz zu zusammenhängenden Mengen – in (zumindest) zwei disjunkte offene Mengen trennbar.

emplas resonnerhangel = 2n samue hongs of t flade goshloscome three them in amin Pull monegacy read In somer houses un 14 = D which mene langed

Gradientenfelder, Stammfunktionen, Potentiale.

Definition: Sei $\mathbf{f}:D\to\mathbb{R}^n$ ein Vektorfeld auf einem Gebiet $D\subset\mathbb{R}^n$. Das Vektorfeld nennt man ein Gradientenfeld, falls es eine skalare \mathcal{C}^1 -Funktion $\varphi:D\to\mathbb{R}$ gibt mit

$$f(x) = \nabla \varphi(x)$$

Die Funktion $\varphi(\mathbf{x})$ heißt dann Stammfunktion oder Potential von $\mathbf{f}(\mathbf{x})$, und das Vektorfeld f(x) nennt man konservativ.

Bemerkung: Ein Massenpunkt bewege sich in einem konservativen Kraftfeld K(x), d.h. K besitzt ein Potential $\varphi(x)$, sodass $K(x) = \nabla \varphi(x)$. Dann liefert die K&1=09×1=-016

Funktion $U(\mathbf{x}) = -\varphi(\mathbf{x})$ gerade die potentielle Energie:

He have
$$\mathbf{x}$$
 and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} and \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} are \mathbf{x} and \mathbf{x} and \mathbf{x} and \mathbf

Multipliziert man diese Beziehung mit $\dot{\mathbf{x}}$, so folgt

man diese Beziehung mit
$$\dot{\mathbf{x}}$$
, so folgt
$$m\langle \ddot{\mathbf{x}}, \dot{\mathbf{x}} \rangle + \langle \nabla U(\mathbf{x}), \dot{\mathbf{x}} \rangle = \frac{d}{dt} \left(\frac{1}{2} m ||\dot{\mathbf{x}}||^2 + U(\mathbf{x}) \right) = 0$$

$$f_{\mathbf{x}} = \mathbf{x} \cdot \mathbf{$$

Hauptsatz für Kurvenintegrale.

Satz: (Hauptsatz für Kurvenintegrale)

Sei $D \subset \mathbb{R}^n$ ein Gebiet und $\mathbf{f}(\mathbf{x})$ ein stetiges Vektorfeld auf D.

1) Besitzt $\mathbf{f}(\mathbf{x})$ ein Potential $\varphi(\mathbf{x})$, so gilt für alle stückweisen \mathcal{C}^1 -Kurven $\mathbf{c}:[a,b]\to D$:

$$\int_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \varphi(\mathbf{c}(b)) - \varphi(\mathbf{c}(a))$$

Insbesondere ist das Kurvenintegral wegunabhängig und $\mathbf{f}(\mathbf{x})$ ist wirbelfrei.

2) Umgekehrt gilt: Ist $\mathbf{f}(\mathbf{x})$ wirbelfrei, so besitzt $\mathbf{f}(\mathbf{x})$ ein Potential $\varphi(\mathbf{x})$. Ist $\mathbf{x}^0 \in D$ ein fester Punkt, und bezeichnet $\mathbf{c}_{\mathbf{x}}$ (für $\mathbf{x} \in D$) eine beliebige, die Punkte \mathbf{x}^0 und \mathbf{x} verbindende stückweise \mathcal{C}^1 -Kurve in D, so ist $\varphi(\mathbf{x})$ gegeben durch:

$$\varphi(\mathbf{x}) = \int_{c_{\mathbf{x}}} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} + \text{const.}$$

Beispiel I.

Das zentrale Kraftfeld

$$\mathbf{K}(\mathbf{x}) := \frac{\mathbf{x}}{\|\mathbf{x}\|^3} = \frac{\Lambda}{\alpha^2} \frac{\mathbf{x}}{\mathbf{x}}$$

besitzt das Potential

$$U(\mathbf{x}) = -\frac{1}{\|\mathbf{x}\|} = -(x_1^2 + x_2^2 + x_3^2)^{-1/2}$$

denn es gilt

$$\nabla U(\mathbf{x}) = (x_1^2 + x_2^2 + x_3^2)^{-3/2} (x, y, z)^T = \frac{\mathbf{x}}{\|\mathbf{x}\|^3}$$

Für die längs einer stückweisen \mathcal{C}^1 -Kurve $\mathbf{c}:[a,b]\to\mathbb{R}^3\setminus\{\mathbf{0}\}$ geleistete Arbeit gilt dann $\mathcal{U}(\mathcal{C}_{\bullet})$ $\mathcal{U}(\mathcal{C}_{\bullet})$

$$A = \int_{c} \mathbf{K}(\mathbf{x}) d\mathbf{x} = \left(\frac{1}{\|\mathbf{c}(a)\|} - \frac{1}{\|\mathbf{c}(b)\|}\right)$$

Beispiel II.

Das Vektorfeld

$$\mathbf{f}(\mathbf{x}) := \begin{pmatrix} 2xy + z^3 \\ x^2 + 3z \\ 3xz^2 + 3y \end{pmatrix}$$

besitzt das Potential

$$\varphi(\mathbf{x}) = x^2y + xz^3 + 3yz$$

Für eine beliebige \mathcal{C}^1 -Kurve $\mathbf{c}(t)$ von P=(1,1,2) nach Q=(3,5,-2) gilt

$$\int_{C} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \varphi(Q) - \varphi(P) = -9 - 15 = -24$$

Interpretiert man f(x) als elektrisches Feld, so gibt das Kurvenintegral zweiter Art die Spannung zwischen den beiden Punkten P und Q an.

Beispiel III.

Wir betrachten das Vektorfeld

$$\mathbf{f}(x,y) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \end{pmatrix}^{\mathbf{f}}$$

etrachten das Vektorfeld
$$f(x,y) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \end{pmatrix} \quad \text{mit } (x,y)^T \in D = \mathbb{R}^2 \setminus \{\mathbf{0}\}$$
with which with the standard dispersion of the stand

Für den Einheitskreis $\mathbf{c}(t) := (\cos t, \sin t)^T$, $0 \le t \le 2\pi$, bekommt man

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{0}^{2\pi} \langle \mathbf{f}(\mathbf{c}(t), \dot{\mathbf{c}}(t)) dt$$

$$= \int_{0}^{2\pi} \left\langle \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \right\rangle dt$$

$$= \int_{0}^{2\pi} 1 dt = 2\pi$$

 $\mathbf{f}(x,y)$ ist somit nicht wirbelfrei und besitzt auf D kein Potential.

Bedingungen für Potentiale.

Bemerkung: Ist f(x), $x \in D \subset \mathbb{R}^3$, ein C^1 -Vektorfeld mit Potential $\varphi(x)$, so folgt

rot
$$\mathbf{f}(\mathbf{x}) = \text{rot}(\nabla \varphi(\mathbf{x})) = 0$$
 für alle $\mathbf{x} \in D$ with $\begin{cases} \partial_1 f_3 - \partial_3 f_4 - \partial_4 \partial_3 \\ \partial_1 f_2 - \partial_2 f_4 \end{cases}$ = 0 eine notwendige Bedingung für die Existenz eines

Somit ist rot f(x) = 0 eine notwendige Bedingung für die Existenz eines Potentials ist.

Definiert man für ein Vektorfeld $\mathbf{f}:D\to\mathbb{R}^2$, $D\subset\mathbb{R}^2$, die **skalare** Rotation

rot
$$\mathbf{f}(x,y) := \frac{\partial f_2}{\partial x}(x,y) - \frac{\partial f_1}{\partial y}(x,y)$$

so ist rot $\mathbf{f}(x,y) = 0$ auch in zwei Dimensionen eine notwendige Bedingung.

Die Bedingung

$$rot \mathbf{f}(\mathbf{x}) = 0$$

ist eine hinreichende Bedingung, falls das Gebiet D einfach zusammenhängend ist, d.h. keine "Löcher" enthält.

Beispiel.

Wir betrachten erneut das Vektorfeld

$$\mathbf{f}(x,y) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \end{pmatrix} \quad \text{mit } (x,y)^T \in D = \mathbb{R}^2 \setminus \{\mathbf{0}\} \quad \text{hight emfel in } h.$$

Berechnet man die Rotation, so ergibt sich

$$\operatorname{rot} \left[\frac{1}{r^2} \begin{pmatrix} -y \\ x \end{pmatrix} \right] = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) + \frac{\partial}{\partial x} \left(\frac{y}{x^2 + y^2} \right)$$

$$= \frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} + \frac{1}{x^2 + y^2} - \frac{2y^2}{(x^2 + y^2)^2}$$

$$= 0$$

Die Rotation von $\mathbf{f}(x, y)$ verschwindet.

Allerdings besitzt $\mathbf{f}(x, y)$ auf der Menge $D = \mathbb{R}^2 \setminus \{\mathbf{0}\}$ kein Potential.

Das Gebiet ist nämlich nicht einfach zusammenhängend.