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Exercise 1: Determine the stationary points of the following functions and check whether
they are minima, maxima or saddle points:

a) f(x)=x2TAx + b’z + ¢ with
X 2 9 -3 6
= R A = b = =24
i (y) = (‘3 4) ’ <_8> e ’

b)
g:R* = R, g(z,y):=2° +y* — 2Tzy + 25.

Solution 1:
a)

9 -3
flz,y) = (x,y)( 5 4) <§>+(6,—8) <§>+2024: 92% —6xy+4y>+62—8y+24 .
fe(z,y) = 18 —6y+6=0 < y—1= 3.
fy(z,y) = =62 +8y—8=—62+8(y—1)=—-62+8-3x=0= =10
— y—1=0=y=1.

—6 8
det(H (z,y)) = 18-8—-36=18-6>0 and (H f(z,y))11=18>0

is positive definit. Hence we have a minimum.

. : 18 -6 :
The Hessian matrix H f(z,y) = with

Alternative classification:
det(H (z,y) — M) = (18 = A\)(8 = \) — 36=0 <= 144 — 26\ + \* — 36=0
=N —-2.13-A+108=0 < (A —13)> = 61.

The eigenvalues A; 2 = 13 £ /61 of the Hessian are both positive. Hence we have a
minimum.
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b) g(x,y) = 23 + y> — 2Tay + 25.

9e(z,y) = 32?2 — 27y L0 = 2= 9y

2

gy(x,y):3y2—27x$0<:>y:9J:<:>x:%

Hence we have

4
% =9y <— y* —Py=0<= y=0Vy=9.
There are two stationary points P, = (0,0) and P, = (9,9).

For the Hessian matrices one computes:

6x —27
Haen = (% o).

0 =27 54 =27
ma0.0) = (S ) a0 = (% )

In P; the eigenvalues of the Hessian are
N =277 =0 = \=+27

P, is a saddle point.

The following applies to the Hessian matrix at P,

— main subdeterminants of the Hessian matrix are positive,
— alternatively: use Gerschgorins theorem

— alternatively: compute the eigenvalues:

(54— N)? =277 =0 <= 54—\ =427 = A =544+27>0

In P, the function g has a (local) minimum.
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Exercise 2:

Let g(x,y):==v* -z —y-exp(z+y)+2.

a)

Show that g(x,y) = 0 implicitly defines a function y(z) in the neighbourhood of
Py =(—1,1), i.e. the following holds locally

g(x,y) =0 = y=f(z), f(-1)=1.

Compute the first-order Taylor polynomial of f from part a) centered at zq = —1.
Calculate f’(—1) using implicit differentiation.

The equation g(x,y) = y?> -z —y-exp(r+y)+2 = 0 implicitly describes a curve
in R?.
Why is it impossible for F, to be a singular point on the curve?

Check whether the curve has a horizontal or vertical tangent at F .

Solution 2)

a)

g(z,y) = y* z—y-explz+y)+2 =0
First we check whether the curve passes through F;:
g(-1,1)=12-(-1) = (1) -exp(-1+1)+2=-1-1+2=0.
With gy(x,y) = 2yx —exp(z +y) —y - exp(z +y)
in P, it holds: gy(—1,1) = —2—-1—-1=—-4#0.

The implicit function theorem says that g(x,y) can be solved for y near the point
(z0,y0)T := (=1,—1)T . This means that there exists a function f(x) with f(—1) =1,
such that in a neighborhood of xg and y, the following equivalence holds

g(z,y) = 0 = y=f(z), f(-1)=1.
The theorem also states

y? —yexp(z +y)

(@) = =g:/9, = 2zy —exp(z +y) — yexp(z +y)
(1) = 1— 1fjl<p(0) _0

and hence
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c)

In b) one can alternatively calculate f’(—1) via implicit differentiation. On the curve
the following holds

L g y@) = = (sl y(o) - explo+ y(e) +2)

= 2y(x)y (z) - = + y(x)® — y(x) - exp(z + y(x)) — y(z) - exp(z + y(z)) - (1 + ' (x))
— 0.

Inserting x = —1 and y(—1) =1 returns:
=2y'(=1) +1 =y (1) - exp(0) — exp(0) - (1 +y'(=1)) = —4y/(-1) =0.
Hence f'(—1) = y'(-1) = 0.

Since we have shown in a) that the requirements of the implicit function theorem are
fulfilled in F, for at least one variable, F, cannot be a singular point.

From part a) we already know that the curve passes through P, and that

We only need to check g, :

9:(z,y) = y* — yexp(z +y),

hence g,(—1,1) =12 —1-exp(-1+1)=1-¢€"=0.

The curve has a horizontal tangent in Fp .

Classes: 02.-06.12.24



