Prof. Dr. I. Gasser Dr. H. P. Kiani

Analysis III for Engineering Students Work sheet 1

Exercise 1:

Let

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \cos(2x - 3y) + x^3 - y^3 + 2y^2.$$

- a) Find all first, second and third order partial derivatives of f.
- b) Determine grad f(x,y), $\nabla f(x,y)$ and $\Delta f(x,y)$.

Solution 1:

a)
$$f(x,y) = \cos(2x - 3y) + x^3 - y^3 + 2y^2,$$

$$f_x(x,y) = -2\sin(2x - 3y) + 3x^2,$$

$$f_y(x,y) = 3\sin(2x - 3y) - 3y^2 + 4y,$$

$$f_{xx}(x,y) = -4\cos(2x - 3y) + 6x,$$

$$f_{xy}(x,y) = f_{yx}(x,y) = 6\cos(2x - 3y),$$

$$f_{yy}(x,y) = -9\cos(2x - 3y) - 6y + 4,$$

$$f_{xxx}(x,y) = 8\sin(2x - 3y) + 6,$$

$$f_{xxy}(x,y) = f_{xyx}(x,y) = f_{yxx}(x,y) = -12\sin(2x - 3y),$$

$$f_{xyy}(x,y) = f_{yxy}(x,y) = f_{yyx}(x,y) = 18\sin(2x - 3y),$$

$$f_{yyy}(x,y) = -27\sin(2x - 3y) - 6.$$

b) grad
$$f(x, y, z) = (-2\sin(2x - 3y) + 3x^2, 3\sin(2x - 3y) - 3y^2 + 4y)$$
,

$$\nabla f(x,y) = \begin{pmatrix} -2\sin(2x - 3y) + 3x^2 \\ 3\sin(2x - 3y) - 3y^2 + 4y \end{pmatrix},$$

$$\Delta f(x,y) = -4\cos(2x - 3y) + 6x - 9\cos(2x - 3y) - 6y + 4$$

$$= -13\cos(2x - 3y) + 6x - 6y + 4.$$

Exercise 2: Consider the following sets

$$\begin{split} &M_1 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ x^2 + y^2 \leq 1 \right\}, \\ &M_2 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ x^2 + y^2 < 4 \right\}, \\ &M_3 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ 1 \leq x^2 + y^2 < 4 \right\}, \\ &M_4 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ x^2 + y^2 \leq 1 \right\}, \\ &M_5 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ x^2 + y^2 + z^2 < 1 \right\}, \\ &M_6 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ x^2 + y^2 + z^2 < 1 \right\}, \\ &M_7 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ : \ (x,y) \cdot (1,2)^T = 1 \right\}, \\ &M_8 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ z = x^2 + y^2 \right\}. \\ &M_9 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ (x+3)^2 + y^2 \leq 1 \right\} \cup \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ (x-3)^2 + y^2 \leq 1 \right\}. \end{split}$$

- a) Which are the boundary points of M_1, \ldots, M_9 ?
- b) Decide for each set M_1, \ldots, M_9 if it is closed, open or neither closed nor open.
- c) Which of the sets M_1, \ldots, M_9 are bounded?
- d) Which sets M_1, \ldots, M_9 are connected? Which are convex?

Solution 2:

a)
$$\partial M_1 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, x^2 + y^2 = 1 \right\} \qquad \text{circle C_1, radius 1, center 0,}$$

$$\partial M_2 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, x^2 + y^2 = 4 \right\} \qquad \text{circle C_2, radius 2, center 0,}$$

$$\partial M_3 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, x^2 + y^2 \in \{1, 4\} \right\} \qquad \text{two circles C_1 and C_2,}$$

$$\partial M_4 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, x^2 + y^2 = 1 \right\} \qquad \text{right circular cylinder side,}$$

$$\partial M_5 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, x^2 + y^2 + z^2 = 1 \right\} \text{ sphere, surface of a ball, radius 1, center 0,}$$

$$\partial M_6 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : (x, y) \cdot (1, 2)^T = 1 \right\} \qquad \text{line $x + 2y = 1$,}$$

$$\partial M_7 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : (x, y, z) \cdot (1, 2, 1)^T = 1 \right\} \qquad \text{plane: $x + 2y + z = 1$,}$$

$$\partial M_8 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, z = x^2 + y^2 \right\} \qquad \text{paraboloid,}$$

$$\partial M_9 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y \in \mathbb{R}, (x + 3)^2 + y^2 = 1 \right\}$$

$$\cup \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, (x - 3)^2 + y^2 = 1 \right\} \text{ two circles with radius 1 and centers } (\mp 3, 0)^T.$$

b) M_1 : closed disc with radius 1 and center zero.

 M_2 : open disc with radius 2 and center zero.

 M_3 : Annulus, region between two concentric circles with centres = 0. The circle with radius 1 belongs to M_3 whereas the circle with radius 2 does not belong to M_3 . Neither open nor closed.

 M_4 : Closed infinitely long cylinder. Note: the complement is open!

 M_5 : Open Ball, radius 1, centre zero.

 M_6 : Line in \mathbb{R}^2 , closed.

 M_7 : Half-space in \mathbb{R}^3 without the dividing plane, hence open.

 M_8 : Surface in \mathbb{R}^3 , closed. The complement is open!

 M_9 : Two closed discs with radius 1 and centres $(\mp 3,0)^T$. Closed.

c) The sets M_1, M_2, M_3, M_5 and M_9 are bounded. If we choose $r \in \mathbb{R}$ large enough the sets are contained in a ball B_r with radius r and centre zero.

The sets M_4 , M_6 , M_7 and M_8 are unbounded. There is no $r \in \mathbb{R}$ with $M_k \subset B_r$, $k \in \{4, 6, 7, 8\}$.

d) All sets accept M_9 are connected: Any two points belonging to one of the sets $M_k, k \neq 9$ can be connected via a curve lying in M_k . This is not true for M_9 . Consider for example $(-2,0)^T$ and $(2,0)^T$.

Since any convex set is also connected, M_9 is not convex.

 M_3 is not convex. Consider for example the line segment connecting $(-1,0)^T$ and $(1,0)^T$.

 M_8 is not convex. Example: the line segment connecting $(-1,0,1)^T$ and $(1,0,1)^T$ does not completely belong to M_8 .

All the other sets are convex.

Classes: 21.–24.11.24