Prof. Dr. I. Gasser Dr. H. P. Kiani

Analysis III for Engineering Students

Sheet 6, Homework

Exercise 1:

a) Let

$$D := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \frac{y^2}{2} - 2 \le x \le 4 - y^2 \right\}.$$

Sketch the set D and determine the center of mass of D with uniform mass density (mass/area) $\rho = 2$.

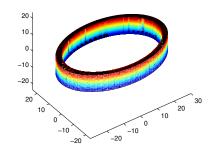
Hint: It holds

Mass: $M = \int_{D} \rho(\mathbf{x}) d\mathbf{x}$

Center of mass: $X_s = \frac{1}{M} \int_D \rho(\mathbf{x}) \mathbf{x} d\mathbf{x}$ (componentwise)

b) Let
$$K:=\left\{(x,y,z)^T\in\mathbb{R}^3:x^2+y^2+z^2\leq 1,\,z\geq 0\right\}$$
 . Compute
$$\int_K\left(y^2-x^2\right)d(x,y,z)$$

Hint:


- Using spherical coordinates might be helpful.
- $-\cos(2t) = \cos^2(t) \sin^2(t) .$

Exercise 2:

Given is the elliptical pipe section

$$R \subset \mathbb{R}^3$$
, $R: 81 \le \left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 \le 100$, $-5 \le z \le 5$.

with constant density ρ .

Compute the volume, mass and moment of inertia of the pipe section with respect to the y-axis using integration. Use elliptical cylindrical coordinates

$$x = 3r\cos(\varphi), y = 2r\sin(\varphi), z = z.$$

Hint:

$$\cos^2(\phi) = \frac{\cos(2\phi) + 1}{2}.$$

Since we do not use a calculator, there is no need to calculate the precise final value. It is sufficient to insert the integration limits into the calculated antiderivatives only.

Hand in until: 17.01.25