Prof. Dr. I. Gasser Dr. H. P. Kiani

Analysis III für Studierende der Ingenieurwissenschaften Blatt 2, Präsenzaufgaben

Aufgabe 1:

- a) Beweisen Sie die folgende Bemerkung aus Seite 24 des Skripts Bemerkung: Ist $\Phi: D \to \mathbb{R}, D \subset \mathbb{R}^3$ eine \mathcal{C}^2 -Funktion, so folgt $\mathbf{rot}(\nabla \Phi) = \mathbf{0}$. Dass heißt: Gradientenfelder sind stets rotationsfrei.
- b) Welche der folgenden Vektorfelder $g, f: \mathbb{R}^3 \to \mathbb{R}^3$,

$$g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x^2 + 2z \\ y^2x + z \\ 2x + y \end{pmatrix}$$
 und $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2xz \\ -2yz \\ x^2 - y^2 \end{pmatrix}$

kann/können kein Gradientfeld einer \mathcal{C}^2 -Funktion $\Phi_i \colon \mathbb{R}^3 \to \mathbb{R}$ sein?

Aufgabe 2:

Gegeben sind die Abbildungen $f, g: \mathbb{R}^2 \longrightarrow \mathbb{R}$.

$$f(x,y) := 3x - 5y,$$
 $g(x,y) := \frac{1}{5}(x^2 + y^2) + 1.$

- a) Berechnen Sie die Gradienten von f und g.
- b) Zeichnen Sie für f die Höhenlinien $f^{-1}(C) := \{(x,y)^T : f(x,y) = C\}$ zu den Funktionswerten $C_1 = 5$, $C_2 = 0$ und $C_3 = -10$. Heften Sie in den Punkten $P_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ und $P_3 = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ jeweils die Richtung des Gradienten an.
- c) Zeichnen Sie für g die Höhenlinien $g^{-1}(C) := \{(x,y)^T : g(x,y) = C\}$ zu den Funktionswerten $C_4 = \frac{6}{5}$, $C_5 = \frac{21}{5}$ und $C_6 = 6$. Heften Sie in den Punkten $P_4 = \binom{0}{-1}$, $P_5 = \binom{4}{0}$ und $P_6 = \binom{3}{4}$ jeweils die Richtung des Gradienten an.
- d) Wie hängt die Richtung des Gradienten in einem festen Punkt mit der Richtung der Höhenlinie durch diesen Punkt zusamme?

Zusatzaufgabe, nur für die ganz schnellen Studierenden:

Gegeben sei das Vektorfeld

$$\mathbf{f}(x, y, z) = (x^2 + y + 4z, y^2 + 2z + 5x, z^2 + 3x + 6y)^{\mathrm{T}}$$

Berechnen Sie die Ausdrücke

$$\operatorname{\mathbf{grad}}(\operatorname{div} \mathbf{f})$$
 bzw. $\operatorname{\mathbf{rot}}(\operatorname{\mathbf{div}} \mathbf{f})$, bzw. $\operatorname{\mathbf{rot}}(\operatorname{\mathbf{rot}} \mathbf{f})$

falls diese definiert sind. Einer der Ausdrücke verschwindet für die vorgegebene Funktion f identisch. Zeigen Sie mit Hilfe eines Gegenbeispiels, dass dieser Ausdruck nicht für beliebige f identisch verschwindet.

Bearbeitung: 04.–08.11.24