Prof. Dr. I. Gasser

Dr. H. P. Kiani

Analysis III for Engineering Students Homework sheet 1

Exercise 1:

a) Find all first and second order partial derivatives of

$$s(x, y, z) := xyz \sin(x + y + z)$$
 and $g(x, y, z) := \frac{\cos^2(x)e^y}{z}$.

b) Calculate for the function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$

$$f(x, y, z) = \arctan(x)e^{y} + \sin(x)\ln(1+y^{2})z + x^{2}e^{z^{2}}$$

the derivative f_{xyz} as well as $\nabla f(x, y, z)$.

Exercise 2: The function

$$u(x,t) := \frac{1}{2} \left[\sin \left(\frac{2\pi}{L} (x + ct) \right) + \sin \left(\frac{2\pi}{L} (x - ct) \right) \right]$$

describes approximately the displacement of the point $x \in [0, L]$ of a vibrating string of length L at time t > 0

The position and the velocity of the string at time t=0 are $u(x,0)=\sin\left(\frac{2\pi x}{L}\right)$ and $u_t(x,0)=0$. These are the so-called initial values.

- a) Calculate the displacement at the end points of the string, the so-called boundary values u(0,t) and u(L,t).
- b) Show that u satisfies the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$
- c) Try to sketch the form of the string for $t = 0, \frac{L}{6c}, \frac{L}{4c}, \frac{L}{3c}, \frac{L}{2c}, \frac{L}{c}$. Hint: $\sin(a+b) + \sin(a-b) = 2\sin(a)\cos(b)$.

Due date: 25.10.24