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Line Integrals of the Second Kind 2
—

Let f: D C R® — R" be a vector-valued and continuous function defined as

f:DcR* — R"
zi= (21, x0T = f(wy,. L a)

and let c: [a,b] — D, t — c(t) be a piecewise C* curve.

Definition: \

/ f(z)dz = / (E(c(t)), é(t)) dt

is called Line Integral of the Second Kind. If the curve is closed, i.e.,

c(a) = ¢(b), one can also write ¢ f(z)dx.
C
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Potential 3

—

Potential Calculation:

A vector field f : D € R™ — R"™ possesses a potential or an antiderivative if
there exists a C! function ® : D C R® — R such that f coincides with the
gradient field of &:

grad ®(x) = f(x) .

A C' vector field f : D — R™ possesses a potential in a simply connected region
D C R™ if and only if the following integrability condition is satisfied for all x € D:

JE(x) = (JE(x)T .

For n = 2,3, this condition coincides with rot f(x) = 0.

If there exists a potential for the vector field f, then its called a Conservative
field.
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Fundamental Theorem for Line Integrals 4

—

For a continuous vector field f : D — R™ with potential ®, the following holds:

(a) /f(x) dx = B(C(b)) — @(C(a))

c

for any piecewise C'* curve C : [a,b] — D.

(b) A potential ® associated with f can be calculated by
d(x) = /f(x) dx + Constant .
Cx

Here, Cyx is any piecewise C'' curve in D connecting a fixed point xg € D to
xeD.
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Fundamental Theorem for Line Integrals 5

—

Another way to calculate a potential (in addition to b) is by successively
’integrating’ the components of the vector field

f=(f1,fo f3)" .

using the condition grad ®(x) = f(x), so in R3:

q)w(xayvz) fl(xvyaz)
@y(x,y,z) = fg(ﬂ?,y,z)
q)Z(xay7Z) f3(x>yaz)
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Example 01 6
—

Consider the vector field f : R? — R? given by

32yt + 1
f(z,y,2) = | 4a3y32° +2y
Sadytzt + 322

(a)

(b)

(c) Calculate a potential using the Fundamental Theorem for Line Integrals.
)

(d) Along the curve C : [0,T] — R3 given by C(t) = (cost,sint,sint 4 cost)”
compute the curve integral fc x)dx for the cases T'=m and T = 2.

Show that f has a potential without explicitly calculating it.

Calculate a potential by successively integrating f.
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Solution: 7

—

(a) The space R3 is simply connected, and the integrability condition

f3y — Joz 20237324 — 20239324
curlf(z,y,2) = | fio — faz | = | 152?y’z? —15a2y’2? | =0
fozr — f1y 12229325 — 12229320

is satisfied. Therefore, f(x,y, z) has a potential v(z,y, 2), i.e., f =grad
v = (Ug, Uy, Vz).

(b) ve(z,y,2) = 322y*25 +1 = w(z,y,2) =23y*%2° + 2+ cly, 2)
vy(z,y, 2) = 423y325 + ¢y (y, 2) L 4z3932° 4+ 2y

ey(y,2) =2y = cly,2) =y* +k(2)

v(z,y,2) = 23y + o+ 9% + k(2)

v, (m,y, 2) = bxdytzt + K'(2) = 5xdytzt + 322

K(2)=322 = k(z)=22+K withKecR

v(z,y,2) =23yt o+ + B2+ K

S
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Solution: 8

—

(c) Choosing the curve K as the direct connection line from the point (0,0,0) to
the point (z,y, 2), i.e., K(t) = t(z,y,2)", a potential v for f can be calculated
using the Fundamental Theorem for Line Integrals as follows:

v(z,y,2) = [fx)dx+K = ff K@) dt + K
K

3(tx)%(t )4(tz) +1 .
< At e + 2y | [ > gt K
5(tx)3(ty)* (t2)* + 3(t2)? z
= fl 12612394 2% + o 4 2ty? + 3223 dt + K
0

I
O—

= 1203425 ¢ ot 4+ 122 + t3z3‘(1) + K

= Byt + P+ 2+ K
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Solution: 9

—

(d) With C(t) = (cost,sint,sint + cost)?, the Fundamental Theorem for Line
Integrals yields

f f(C(t))C(t) dt = v(C(m)) —v(C(0))
= (10 )—v(l,O,l):—l—l—(l—i-l):—

@

Figure: Curve C for T'= 2, (closed curve)

fc f(x)dx

27T .
I f(x)dx Of £(C(£)C(t) dt = v(C(2r)) — v(C(0))

= ¢(1,0,1) —v(1,0,1) = 0
othomatics. -




Green’s Theorem 10

—

Consider a C! vector field f : G — R? on the domain G C R?, and a compact set
D C @G, which is representable as a normal region with respect to both coordinate
axes. Then, the following holds:

/ rot £(x) dx = f £(x) dx .

D oD

Here, the boundary 9D, in the chosen parameterization for computation, must be
traversed in a mathematically positive direction, i.e., counterclockwise.

Department of
Mathematics @ —_—



Example 02 11
—

Verify Green’s Theorem for the vector field

f(:E? y) = (—l'y - 2y7 2z + 4y2)T

and the region E enclosed by the curve 2% + 43% = 4.
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Solution: 12

—

The ellipse E can be described in Cartesian or polar coordinates as follows:

<r<
( )z@(r,gp)z(wCOSgp), Osr=l = det ®(r, ) = 2r

rsin g 0<p<2r’
E = {(x,y)T€R2] —2§x§2,—\/1—(3:/2)2§y§s/l—(w/2)2},

Q = {(rne)TeR*|0<r<1, 0<¢p<2r} with ®Q)=EFE

< 8
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Solution: 13

—

Parametrization of the ellipse boundary dF by:

2 cos
c(sa>:( SinSD@), 0<p<2m

27
$f(x)dx = $f(x)dx = 0f<f(C(90))’é(s0)>dso

oF
_ Qf —2cospsinp — 2sin @ —2sinp d
o 4cos p + 4sin? ¢ ’ cos @ v
2m

= [ 4 cos psin? p 4 4sin? p + 4 cos? ¢ + 4 cos psin? ¢ dp
0

2m
= [4+8cospsin®pdp = 4<,0+%si]a?’<p}37T = 87
0
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Solution: 14

-
grotf(x) dx = £(2x+4y2)x—(—xy—2y)y d(z,y)
= f4+xda:y Oflzfﬂ4+2rcosg0)2rdg0dr
- 8frdrf7rdg0+ j 2d fcosgodnp
= 87rr2|0 + % . sm<p\0 = 8r

Green’s Theorem:  § f(x)dx = 87 = [rotf(x)dx
oF E
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Surfaces in R? 15

—

Let G C R? be a region and consider a C'! mapping

p:G — R3

e=(1) = wo= [ s

z(ug,uz)

0 0
If the vectors g(u) and g(u) are linearly independent for all u € GG, then,
Ui U2

(a) F:= {p(u) e R® |u € G} =p(G)
Surface or Surface Patch in R?.

(b) p Parametrization of F,
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Surfaces in R? 16

lll......---———

(¢) G Parameter Range of F' with respect to p,

0 0
(d) Tr(\, p) = p(u®) + )\ag(uul ) + M@g(uu; ) with \,x € R Tangent Plane at the

point p(u®) to F,
o) 20 9p(u)
8u1 aUQ
Op(u) Ip(u)

X

Normal Vector to F' at the point p(u),

Ju ou .
f = 1 2 Unit Normal Vector to F,
(f) n(p(u)) 3p(U)X3p(U)

8u1 8u2
(g) do:= ’ ;i 8652 Surface Element and

op(w)  Ip(w)
8u1 8UQ

(h) fp(G) do:= [, du  Surface Area of p(G).
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Surface Integrals 17

—

For the surface F' parametrized by the compact, measurable, and connected set D
using the C! mapping p, i.e., ' = p(D), the following surface integrals are defined:

(a) Surface Integral of the First Kind for the continuous function f: FF — R

/lwf(x)dO:Z/JJf H o 8u2)

du.
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Surface Integrals 18

—

(b) Surface Integral of the Second Kind for the continuous vector field

f:F - R3
Jrfx)do = [p{f(x),n(x)) do
= [p(f(x),n(x)) ' 8851 8852 du
— Jp (fotw), Z o H g
Note:

If the vector field f represents the velocity field of a stationary flow, then the
surface integral [, f(x) do can be interpreted as the flux of f through the surface
F', measured in the amount of fluid per unit time in the direction of the chosen
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Example 03 19
—
//Sde

Evaluate
where S is the portion of the cylinder 2 + y? = 3 that lies between z = 0 and
z = 6.
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Solution: 20

—

Parameterization:

Pz, ¢) = V3cos i + V3sin ] + 2k

The ranges of parameters:

The cross product:

i i k
0 0 1 :—\/gcosgoi—\/gsincpj
—/3sin %) V3 cos e 0

The magnitude of this vector is,

ﬁzxﬁw:

17 % 7l = V3
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Solution:

—

The surface integral,

21

//Sde
://D\/gsinap(\/g)d(%@)
:3/()27r/06sinapdzds0

. 2

:3/ 6sinpdp = (—18cosyp)| =0
0 0
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Gauss’s Divergence Theorem 22

—

For the C! vector field f : G — R? on the domain G C R3 and the compact
measurable standard region S C G, whose boundary 95 consists of finitely many
smooth surface pieces, the following holds:

/ divf(z) dx = (x)do.
S

S
0s

In the calculation of the surface integral over the closed surface 9.5, hence the
op() _ dp()
6u1 8u2

notation fas is used, the normal vector with respect to S points

outward.
Remark:
If the vector field represents the velocity field of a stationary flow, then the surface
integral 3%5‘ f(x) do can be interpreted as the flow balance through the volume S.
For divf(z) = 0 in S, according to Gauss’s Divergence Theorem, .o f(z) do =0,
meaning that as much flows out of S as flows into it.
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Example 04 23
—

Given the solid region
K:{(x,y,z)TeR3 }x2+y2—|—z2§9, {L‘SO}

and the vector field .
f(:l?, Y, Z) = (,% —Z, 33)

(a) Sketch K.

(b) The boundary of K can be described by a planar surface piece S and a
non-planar surface piece H.
Provide parametrizations for both boundary surface pieces S and H.
(c) Calculate the flux of f through both boundary surface pieces S and H.

(d) Calculate the volume integral [, div (z,y, 2) d(z,y, 2) .
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Solution:

24

Figure: Hemisphere K
(b) Parametrization of the circular side S:  p: [0,3] x [0,27] — R? with

0

p(rip) = | rcose
7 sin ¢
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Solution: 25

—

Parametrization of the hemisphere surface H:
3
0: |55 | % [-5.5) » & win

27 2 272
3cos pcosy

q(p,¥) = | 3sinpcosy
3siny

(¢) Flux through S, with the outward normal

o 9 1 2 3 r
8p 8p =0 cosp sinp |[=1| 0
" v 0 —rsinp 7rcose 0
3 2w T‘COS(p 3 2w
/ dO://< , 0 >dcpd ://TQCoswdgodr:O
g 0 0 rdsin® 0 0
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Solution: 26

—

Flux through H, with the outward normal

P P e1 ) es COS p cos Y
8q X 8q —3singcosy  3cospcosy 0 =9cos?y | singcosy
v v —3cospsiny —3sinpsiny 3cosy sin 1)

37/2 /2 3sin ¢ cos ¥ COS p cos Y
Jpdo = [ [ 900s¢< —3cospcost |, | singcosiy > dapdp
/2 —7/2 27 sin® 1) sin 1)
3r/2 /2 5 |T/2 4
_ [T 243cos i sint ddipd — 2437 S Y| 4860m
w/2 —7/2 —7/2 5
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Solution: 27

—

(d) Using the Gaussian Integral Theorem:

/dlvfdmy, /fdo+/fd 486”

Alternatively:  direct calculation using spherical coordinates:

fK div f(z,y,2) d(x,y, 2)

33m7/2 /2
= fK3z dz,y,2)=[ [ [ 3r2 sin? ¢ - 12 cos ¢ dipdpdr
0 7/2 —m/2
3 /2 w/2 3
- f7"4dr [ de [ 3cos¢s1n2¢d¢—— |3”/2 s1n3¢\”/ 4856”
w/2 —7/2
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