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The Riemann Integral 2

—

Exemplary representation for a bounded function on a rectangle

fila,b] x[e,d — R
—_—

=Q
(z,y) — flx,y).

Partition Z of the rectangle Q) by

a=xpg<t1< - <xp=b, c=yy<n<---<yn=d

into subrectangles

Qij = [xi, Tiv1] X [y, Y1)

with area Area(Q;j) = (zit1 — xi) - (Yj+1 — ¥j)-
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The Riemann Integral 3

—

Riemann Lower Sum: (Untersumme)

n—1 [fm—1
Uy (Z) =) (Z( inf (f(:c,y))-Area(Qi,j))

z,Y)€Q;, 5

Riemann Upper Sum: (Obersumme)

—_

n—

m—1
<M@:Z<Z M>WMWMM%0

i—=0 \ j=0 (@Y)€Qi;

Riemann Integral: (defined only if sup, Uy(Z) = infz O¢(Z))
[ 1 i) = swusz) (~igos2)) .
Q
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Theorem: !Fubini’s Theorem)

If

z/cdf(w,y) dy
=/abf<x,y> dz

exists for all = € [a,b] and

exists for all y € [¢,d], then

= [ ([ )

[ ([ e




Example: 01 5
—

For @ :=[0,2] x [0, 1], compute for the function

fiQ=R, fley) =2-2z

(a) Compute the Riemann lower and upper sums for the following
partition Z of @

2(0—1) 21 —1 3
Qiyj_|:(l )7Z:|><|:j 7]:|7i7j_17"'7n

n n n n

(b) Compute the integral of f over @ according to Fubini’s theorem.
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Example: 01 (a)

Riemann lower and upper sums:

Up(Z) = Yo infeyeq,, (f(2,y)) - Area (Qij)
- Y (2 <2f 2)-%)
- Ay (T - D)
= % Z?:l (n —1)

2

_ 2n’-n) _ 2(1_l)

0s(2) = Lijmiswyeq,, (f(e.1) - Area (Qiy)
= (S (2 250) A) = 2040
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Example:01 ( b) 7

The integral of f over () according to Fubini’s theorem.

Jof@yda,y) = f3 (f52-zdr)dy

2
1 2
= I 2x—%0dy
1
= fOZdy
= 2 =2

Of course, one obtains:

2(1- 1) ~0y2) < [ )i =2

n

1
/f(ﬂf7y)d(:v,y)=2 < Of(Z):2(1+n) :
Q




Example: 02 8
—

Compute the following integrals:

(a) fﬁﬂ fow cos(z + y) dx dy,
(b) [p 92%\/yd(z,y) with R=[1,2]x [1,4],

(c) fQ sinh z + (2x+y) d(z,y,z) with @ =][1,2] x[0,1] x [-1,1].
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Example: 02 (a,b)

(a)

LTS cos(z+y)dedy = [ sin(z+y)[f dy
= fﬂ?w sin(m 4+ y) — siny dy
= (cosy —cos(m +y)|2" =4

(b)

R=11,2] x [1,4],

fR 9x2\/37d(3:,y) = f12 f14 9x2\/gjdy dz

ff 322 (f14 3y dy) dx

= ff 322 da;) . <f14 3y dy)

2 4
373‘1) ' (2y3/2]1> = 98

_



Example: 02 (c) 10

Q=11,2] x[0,1] x [—1 1].
fQ sinh z + (2x+ gz U,y 2)
= fl fof 1 Slnh2+(2+)2 dz dy dx

1
= fl fo (coshz—i—W) dy dx

1
= f1 fo 2x+y d'y‘m—fl 2x+y‘0 dx

= 7 — i+ 2dr = (—2In |2z + 1| + 2Inz|)[]
= —21n5+21n2+21n3:ln%
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Normal regions in R? 11

—

A set D C R? is called a normal region if

1. continuous functions @1, s : [a,b] — R exist such that D has the
following representation:

D={(y)]a<z<b, pi(z) <y <)}

2. continuous functions 1,19 : [¢,d] — R exist such that D has the
following representation:

D= {(z,y) | ¥1(y) <x <ths(y), c<y<d}.
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Normal regions in R? 12

—

A set D C R3 is called a normal region if continuous functions
p1, w9 and &1, & exist, such that D has the following representation:

D:{(x,y,z)\aﬁxg ba 301(3:) SyS(PQ(I') ) fl(x,y) éZ ng(.’ﬂ,y)}

As in the representation in R?, z, y, and z can be arbitrarily
interchanged.

Remark:

Often, sets D over which integration is to be performed cannot be
represented by a single normal region, but only by the union of several
normal regions.
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Example: 03 13
—

1. 1.1 Draw the triangle D with vertices P; = (—1,1), P, = (0,0) and
P; = (2,2) and represent it as a normal region.

1.2 Calculate [, 18y d(z,y)

2. 2.1 Draw the region Z described by x <0, z > 1, 2 < 3, and
22 4+ y? < 4, and represent it as a normal region.

2.2 Calculate [, 3z d(z,y, 2)
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Example: 03 (1.1) 14

The lines through the given points are:
Py, Ps: g(x) = ($+4)/3, P, Ps: fl(.%'):—[l}, P, Ps:
fo(x) = 2.

o {(1)ex

—-1<z<2, ]:U|§y§(x+4)/3}
Y

2
1.5

1

0.5

TS0 0.5 1 1.5 2 °

Image : Triangle D
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Example: 03 (1.2) 15

2 (z+4)/3 2
xz+4)/3
lj;lSyd(m,y) = 7f1 |;{| 18y dy dr = J; 97;2“(%'+ 3 dx
2 4)3 .2
1 -1
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16
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Example: 03 !2.2)

fZ 3xd(z,y,z) =

17

0 Vi—zZ 3 3 0 Vi_z2

[ [ [3zdedyde = [dz[ [ 3xdydx

-2 —Vi—z2 1 1 -2 _\/4—32

0 0
2 [ BaylV _dr = 2 [ 62v4— 22 da
_f2 Vi _f2

—4 (4—a2)?2" ) = 32
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Example: 03 (2.2) 18

or alternatively with transformation to cylindrical coordinates:

33m/2 2
[y 3z d(z,y,z) = [ [ [ 3rcos(o)rdrdydz
1 7/2 0
3r/2 3
:f37“drfcos Yde [ dz
w/2 1

- () (o) ()

= 8 (-2)-2=-32
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Mass, Center of Mass 19

—

Consider a body K C R? with the nonnegative continuous mass
density function p : K — R.

The mass M of the body K is calculated by

M = /K plx,y,2) d(z,y, z) .

The center of mass x; of the body K is given by

fK p(x,y, Z) ’ xd(aﬁ,y,z)

Ts
1
xo= | we | = | S oo s) ydGen)
Zs

fK p(r,y,2) - zd(z,y,2)
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Moment of Inertia 20

—

The moment of inertia © 4 of a body K with respect to an axis A is
calculated by

®A = / p(l‘ayaz)"g(x’y? Z) d(x,y,z) :
K

Here, r(z,y, ) represents the distance of the point (z,y,2)” € K to A.

Steiner’s Theorem:

If S is an axis parallel to A and passing through the center of mass x,
of the body K, d is the distance of the axis A from xg, and M is the
mass of K, then, for constant density p, the following holds

O4=Md*+ Og.
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Example: 04 21
—

Given: The set

D :={(z,y) e R?:

» Write D as a union of normal domains (with respect to x).

» Compute the area of D.

» Compute the center of mass (centroid) of D assuming a

homogeneous density p = 3. Department of
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Example: 04 22
—

1) Decomposition into normal domains.
We split D into three subregions:

D =DiUDyUDs,

where
Dy:—2<z<-1, 2?—-4<y<4-—2z?
Dy:—1<z<1, —-3<y<4—2?
Dy:1<z<2 z2-4<y<4—2?
2) Area of D.

We denote the area by F'. Notice that, by symmetry, we can double
the integrals over z > 0 and include the contribution from x < 0.
Hence,
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Example: 04 23
—

1 4—x? 2 4—x?
F:2[/ / 1dyd:c+/ / 1dyda:].
0 J-3 1 Ja2—-4

region Dy for 0<z<1 region D3

(a) For 0 <z <1:

/H Ldy = (4—22) — (—3) = 7— a2
-3
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Example: 04 24
lllllll..ll...-———_-

(b) For 1<z <2:

4—22
/ ldy = (4 —2°%) — (2° — 4) = 8 — 222
z2—4

Thus,

/12(8—2x2)dx: |:8£C—2§3}2: (16—1—36) - (8—%) :%.

1

Putting these together and multiplying by 2 (due to the symmetry
about z = 0):

1 2
F= 2(/0 (7—2?) d:z:—{—/l (8—227) d:c> =2(2+4) =2x3 = 2x10 = 20.
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Example: 04 25
—

3) Center of mass (centroid).
Mass of D:
Since the density is p = 3 (constant),

M = / pd(x,y) = p- Area(D) = 3 x 20 = 60.
D
Let (zs,ys) be the centroid. Then

Ts = % /D$p($’y) d(IE?y)

By symmetry (the domain is symmetric about the y-axis), we
immediately get
s = 0.
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Example: 04 26
ll......---———-

For y,, we write

1 P 1
ys=M/Dyp(x,y)d(w,y)=M/Dyd(x,y):F/Dyd(x,y)-

Moreover, by symmetry arguments, the contribution to [y d(z,y)
from D; and Dj (the left and right “caps”) is zero. Thus we only need
to integrate over Da:

Dy:—1<x<1, —3§y§4—x2.

1 1 4—g2
Ys = — / ydydx.
F r=—1Jy=-3

Hence
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Example: 04 27
lllllll..ll....-———_-

Compute the inner integral:
y=4—a? (4 — 22)?

4—22 2
Y
/ ydy =3
-3 y:—3

1 4—x? 1 2 4 1
— 1
—1Jy=—3 1 2 2/

Because the integrand 7 — 8z2 + 2 is an even function, we can write
1 1
/ (7— 82 + 2*) dz = 2/ (7 —82” + z) da.
-1 0
Hence
1 /1 1
3 / (7—8x2+x4)d:v:/ (7 — 822 + 2*) du.
0
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Example: 04 28
—

We compute

1 1
8 1 8 1 68
T—82> +at)de = |To — -2+ -a°| =T— -+ - =—.
/0( x“ + %) dx [m 3x—|—5x0 3+5 15
Thus . e ?
T 68
ydyde = —.
Jo o=
Therefore,

168 68 68 17

F15 15-20 300 75
Hence the centroid of D is

(0r0) = (0,72 ).

Ys =
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Coordinate Transformations 29

—

1. Polar Coordinates: 0<r<R, 0<¢p <27

< T > = ®(r,p) = ( 7 COS (P > (= det(J®(r,¢)) =)

Y rsin @

2. Cylindrical Coordinates:
0<r<R, 0<¢<2r, a<z<b

T 7 COS
y | =®(r,p,2) = | rsing (= det(JP(r,p,2)) =7)
z z
3. Spherical Coordinates:
0<r<R, 0<¢p<2mr, —7/2<60<7/2

x r cos ¢ cos f
y | =®(r,¢,0) = | rsingcosd (= det(J®(r,¢,0)) = 72 cos €
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Transformation Theorem 30

—

For continuous functions f : K C R® — R, the following holds

| t@de= [ @) |dee(78(0)] du
K D

D C R" compact and measurable, K = ®(D), and the C' coordinate
transformation : D — R"™.
The transformation ® must be invertible on DY.
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Example: 05 31
—

1. Draw the quarter sphere K given by y <0, z < 0, and
22 + y? + 22 < 16. Calculate its center of mass using the density
function p(x,vy, 2z) = 22 + y? + 22 + 1 and using spherical
coordinates.
2. P is described by z2 + 2 + 22 < 9, there is a sphere K with
constant density p.
2.1 Draw K .
2.2 Calculate the mass and the moment of inertia of K with respect to
the z-axis.
2.3 Calculate the moment of inertia of K with respect to the axis D
parallel to the z-axis and passing through the point (2,1,3)7.
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Quarter-sphere K

Figure
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Example: 05 (1) 33

Spherical coordinates for K: 0<r <4, 7 <p <271, —7/2<60<0

with
x 1 cos(p) cos(f)
y | = | rsin(p)cos(d) | = ®(r,p,0), det JB(r,¢,0) =r?cos(h)
z 7 sin(0)
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Example: 05 (1) 34

Calculation of the mass M in spherical coordinates using the
transformation theorem with p(z,y, 2) = 22 + y? + 22 + 1:

M = (22 4+ 9y + 22+ 1) d(x,y,2)

0
[ (r* +1)r? cos(0) d dy dr

J
K
4 21
I
0472T —7/2
_ 4,2
= [ [rt+r*dedr
0on
4 3.0 +5.)x " 3392
= f?T(Y’4—|—7’2)dT’:( kSR04 il
; 15 . 15

Department of
Mathematics @ —



Example: 05 (1) 35

Calculation of the coordinates of the center of mass (s, ys, 2s):

rs = (2 +y?*+ 22 + D d(z,y, 2)

(r2 4+ 1)r cos(y) cos(0)r? cos(6) d dy dr

V)

d—o

0 + sin(6) cos(6) |
2

(r5 + r3) cos(yp) de dr

Of—m i O — R —
ﬁ%:}“ :l%:w‘
|

—7/2

5 2= == gl

I
5
<
C =

(r® +7%) sin(p) 27 dr = 0

This result also arises due to symmetry.
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Example: 05 (1) 36

(2 +y? + 22 + 1)y d(z,y, 2)

Ys =

(72 4+ 1)rsin(g) cos(0)r? cos(6) df dyp dr

[\

J—c

0 + sin(6) cos(6) |
2 —7/2 A
7(2-7% +3- 7"4)‘0
24M

SIS LN

O n O R —
S Ay Ay

(7"5 + 7"3) sin(p) dp dr

:1

- 27 _
= 4M (r® —{—T‘)COS(K,O)|7F dr =

112O7r 175

3M 106
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Example: 05 (1) 37

(22 4+ 9% + 22+ 1)z d(z,y, 2)

Zs

(r? 4+ 1)rsin(6)r? cos(0) df de dr

\
A —o

[\

sin?() 0
2 —7/2

4 7r(2-7“6+3-r4)’3

- 5 3ol dr = —
oag J 07 ) el dr 240

11207 175

dy dr

SIS ST

= O O R—
Ay A

(r5 +13)

3M 106
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Example: 05 (2.1)

38

x= 3 cos(s) cos(t),y= 3 sin(s) cos(t),z= 3 sin(t)

Figure: Sphere K with radius R = 3
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Example: 05 (2.2) 39

Calculation of the mass M in spherical coordinates using the
transformation theorem with constant density p:

327 m/2
M = fpd(m,y, =p[ [ [ r%cos(0)dddpdr
00 —7/2
2 /2 Ak 2 /2
— pf r drf de [ cos(9)did = p <3> ()" (si11(9))|_7r/2
—7/2 0
33 47733
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Example: 05 (2.2) 40

Calculation of the moment of inertia with respect to the z-axis in
spherical coordinates using the transformation theorem with constant
density p and the addition theorem. cos®(#) = (3 cos(f) + cos(36))/4

0. = [p(a®+y?)d(z.y,2)
K

327 /2
= pf [ [ (rtcos*(p) cos?(0) + r2sin?(p) cos?()) r2 cos(6) db dy dr
00 —x/2
3 27 /2
= pfridr [do [ cos3(0)dd
0 0 —7/2
7‘5 3 ) 1 w/2
= prlF (©)]g" = ( 3sin(#) + 5 sin(36)
5 )1, 4 s
_ B, 4 648
- TR T T
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Example: 05 (2.3) 41

Since the center of mass of P is at the origin due to symmetry
reasons, according to the Steiner’s theorem,

G)D = Md2 + 6z—axis

648
— 36mp(22 + 12) + %
_ 15487p

-2
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