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Extrema with Equality Constraints 2

—

The goal is to find the extremal values of a C'' function

f:DCR" =R
on the following subset of the domain:
G:={xeDlg(x)=0} C D,
with a C! function
g:D—R™

and m < n, i.e., the extremal values must additionally satisfy the m
equations

g(x) = (g1(x),. .- 7gm(X))T =0
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Theorem: SLagrange Multiplier Rule) 3

Let x” € D be a local extremum of the function f under the
constraint g(x%) = 0, satisfying the regularity condition

Rank Jg(x") = m

Then there exist Lagrange multipliers A\, ..., A\,
such that the Lagrange function

m
F(x):= f(x)+ Z Aigi(x)
i=1
satisfies the necessary first-order condition:

grad F(xY) = grad f(x°) + Z Aigrad g;(x%) = 0.
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Classification: (Min, Max, or Saddle Point) 4

A) Compact Admissible Set and Continuous f

If the admissible set is compact and f is continuous then Min/Max
are attained.

Candidate with the highest function value = global maximum.
Candidate with the smallest function value = global minimum.

B) Second-Order Conditions (in the case of two constraints)

Let xo be admissible (i.e., g(xg) = h(zo) = 0), the regularity condition
is satisfied at xg, and assume:

3\, p with VF(zg) = 0.
Define the Tangent Space:

Te(xo) = {w : (w, Vg(zo)) = 0 and (w, Vh(zg)) = 0}.
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Classification: (Min, Max, or Saddle Point) 5

Necessary for a Local Minimum:

w' Hp(zo)w >0, Y € Te(xo) \ {0}

Sufficient for a Local Minimum:

w? Hp(zo)w > 0, Yw € Tg(xo) \ {0}.

Necessary for a Local Maximum:

w! Hp(xo)w <0, Yw € Tg(xo) \ {0}

Sufficient for a Local Maximum:

w! Hp(zo)w < 0, Vw € Tg(xo) \ {0}.
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Classification: (Min, Max, or Saddle Point) 6

This means, in particular, that the necessary conditions for minima
(maxima) in the unconstrained case (i.e., positive (negative)
semi-definite Hessian matrix) are no longer strictly necessary here.
For example:

The Hessian matrix Hp(zg) can have negative eigenvalues at a
minimum, as long as the corresponding eigenvectors do not represent
admissible directions (i.e., directions that lead out of the admissible
set).
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Example: 01 7
—

Compute the extremal values of the function

fIRZ SR, flzy)=z+y

on the circle 2 + 3% = 1.
a) Under the constraint

g(z,y) =a*+y° —1=0
determine the extremal points of the function

flz,y)=2+y

using the Lagrange multiplier rule.
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Example: 01 (a) 8

Regularity condition:

grad g(z,y) = (2z,2y) = (0,0) = (z,y) = (0,0),

i.e., only (0,0) violates the regularity condition.

Since ¢(0,0) = —1, (0,0) is not on the circle.

All feasible points, i.e., those with g(z,y) = 0,
satisfy the regularity condition

Rank(Jg(z,y)) = 1.
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Example: 01 (a) 9

Lagrangian:  F(z,y) =z +y + Ma? +¢* — 1)

Lagrange Multiplier Rule:

1+ 2\x 0
< VF(z,y) > | 1420 =10
9(@,y) 2?2 +y2 -1 0

Multiplying the first equation by y and the second by x and
subtracting both, we get

r—y=0 = z=uy.
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Example: 01.(a) 10

From the third equation, we then obtain 22 + 22 = 1

= T12= +

1 1
—, =+,
V2 T T

Extremal candidates:
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Example: 01.(a) 11

Since the set g(z,y) = 0 describes a circle, it is compact.

Thus, the continuous function f attains a maximum and minimum on
g(xz,y) = 0.
We have f(P1) = v2 and f(P) = —/2.

So, P; is a maximum and P, is a minimum.
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Example: 01.(a) 12

Image: Constraint g(z,y) =22 +32>—-1=0
with level curves of the function f(z,y) =z +y
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Example: Ol.!b} 13

b) Parametrization of the circle

g(z,y) =2 +y* ~1=0

by ¢ and then solving the extremal problem

for h(t) := f(c(t)).

Department of
Mathematics @ —



Example: Ol.gb} 14

The circle is parametrized by polar coordinates

<$>:<098t)::c(t), 0<t<2m,
Y sint

i.e., g(cost,sint) = 0.

Now, we just need to find the extrema of the function

h(t) := f(c(t)) = cost +sint
h'(t) = —sint +cost =0 = tant=1

s
= tl:Z’ to = —
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Example: Ol.!b} 15

h"(t) = —cost —sint

= W(t1)=-V2<0,h (t2) =V2

Thus,

t; = 7/4 is a maximum with h(t;) = V2
and

ty = 5m/4 is a minimum with h(tz) = —v/2.
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Example: Ol.!b} 16

Figure: c(t) and f(c(t)) = cost + sint
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Example: 02 17
—

For the function

flx,y,2) = 2*

compute and classify the extrema on the intersection of the cylinder
22 + y? = 9 with the plane y = z using the Lagrange multipliers rule.

Constraints:
gi(z,y,2) =2+ y* =9 and go(z,y,2)=y—z.

Regularization condition:
_(2xz 2y O
Jg(a:,y,z)— <0 1 _1>

has rank < 2, when the first row is equal to the zero vector,
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Example: 02 18
—

i.e., for the points (0,0, 2).

However, these are not feasible due to
91(0,0,2) = —9

So, all feasible points satisfy the regularization condition,
The Lagrange multiplier rule can be applied:

Lagrange function:

F(a,y,2) =22 + M(2® + 9% = 9) + Aa(y — 2)
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Example: 02 19
—

Lagrange multiplier rule:

2)\11’ 0

2My + Ao 0

(VF(x,y,Z)>: 2% — Ay B
g(ac,y,Z) $2+y2—9 0

Y —z 0

1. Equation:

1. Case: x=0

= O:gl(ovyaz):y2_9

= y=3=z V y=-3==z2
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Example: 02 20

—
0 0

Extreme candidates: P = 3 |, P= -3

3 -3

2. Case: M\ =0
= XM=0 = 2z=0=y = z=3Vzr=-3

3 -3
Extreme candidates: Ps=| 0 | ,Py= 0
0 0
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Example: 02 21
—

The intersection of the cylinder 22 4+ y? = 9 with the plane y = z
is an ellipse and therefore compact.

The continuous function f attains its absolute maximum and
minimum there.

Among the extreme candidates
are the absolute maximum and minimum.

The function values of the extreme candidates are

f(Pr2) =9, f(P54)=0.

So, Py 2 are absolute maxima, and P34 are absolute minima.
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22

N

AN
Y

f on the intersection of the cylinder 2 + % = 9 with the

Example: 02
Figure

plane y = z

Department of

Mathematics




Example: 03 [Old Exam Problem] 23

Determine the global extrema of the function:

f(‘/Evyaz) :$—8y+2
on the intersection of the two spherical surfaces:
g(z,y,2) = 2> + (y+4)2 + 22 - 25 =0

and
h(z,y,2) = 2> + 4> + 22 — 9 = 0.
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Example: 03 [Solution Outline] 24

Regularity Condition (RC):

z 2 2¢ 2(y+4) 2=z
Homteps) = (J 0 9) = (50 2000 )

RC violated if:

2z 2x a=1Vzr=0
al2(y+4)| =2y | = { not satisfiable for o = 1
2z 2z a=1Vz=0

Thus, RC can only be violated for x = z = 0.

9(0,1,0) =0+ (y+42+0-25=0=y = —4+5,




Example: 03 25
—

Conclusion: The regularity condition is satisfied at all admissible
points.
With f(z,y,z) = x — 8y + z and the Lagrange function:

F = f+Ag+ ph,

we obtain the necessary conditions for extrema.
1) F, =0:
2) Fy = O
3) F, =
4) g= O
24 (y+4)2 422 -25=0,

5) h=0:
24y +22-9=0.
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Example: 03 26
—

From the last two equations, it follows:

(y+4)?%—9y> =16 < 8y+16=16 < y=0.

Substituting y = 0 into the second equation yields A = 1, and
therefore:
I) 1422+ 2pz =0,

II) 14+2z+2puz =0,
IM0) 22 4+ 22 -9 =0,
A=1,y=0.
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I-1II:
14+u)(z—2))=0 < p=—-lorz =z

For p=—1: (I)
For z = z: (III)
Candidates and Function Values For f(z,y,2) =z — 8y + 2:

3
V2
P=|0], f(P)=3V2,
3
V2

3
£

P=| 0 |, f(P)=-3V2
3
£
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Example: 03 28
—

Since the intersection of the two spherical surfaces (empty, a point, or
a circular boundary) is a compact set, the minimum and maximum of
the continuous function f are achieved. A comparison of the function
values shows that:

» P;: Global maximum.

» P,: Global minimum.
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Example: 04 29
—

Given the optimization problem:

f(z,y) =2® +y* to minimize,
subject to the constraint:
g(:z:, y) =l - arctan(y + 1) —1=0.

(a) Verify the regularity condition and demonstrate zg = (1, —1)7,
along with an appropriate multiplier A, satisfies the requirements to
be an admissible and stationary point of the Lagrange function F'.

(b) Investigate the Type of the Stationary Point

Investigate the stationary point (1, —1)7 for its type. For this
purpose, set up the Hessian matrix H,F'(zp) and check its definiteness
on the tangent space:

ker Dg(xo) = Tg, (x0). Department of . -



Example: 04 30
—

Regularity Condition: The Jacobian of g(x,y) is the gradient:

J9(z,y) = Vg(z,y) = (6“7 —M> :

For all (z,y) € R?, the gradient:

Vg(z,y) # (0,0).

This means the rank of Vg(x,y) is 1, satisfying the Regularity
Condition.

Admissibility:

The constraint is satisfied at the point zo = (1, —1):

g(1,—1) ="' —arctan(-1+1) —1=1-0-1=0.
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Example: 04 31
—

Lagrange Function:

F(z,y,A) = f(z,y) + Ag(z,y),
where:
F(z,y,\) =2 + y* + A (e" ! —arctan(y + 1) — 1)..

Stationary Point:
To find a stationary point of F'(x,y,\), we compute:

VF(1,—1,)) = 0.
Compute the gradient:

1

1+ (1+ 2) Department of
(L+9)" ) oy PHY

VE(z,y)= <2x + A" 2y — A




Example: 04 32

—
At zg = (1,-1):
1-1 1
VE(1,-1) = (2(1) el 2(-1) — A1+(1—1)2> = (24X —2-)).

Setting VF(1,—1) = 0, we find:
242=0 = A=-2.

Thus, zg = (1,—1) is a stationary point.
Hessian Matrix: The Hessian matrix of F'(x,y) is:

Fow F
Hy F =" l‘y) :
o (Fyﬂc Fyy

Compute the second derivatives:

Mathematics
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0
FCEI = 7(2[E + )\61—1) = 2 + )\633_1 Department of
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Example: 04 33

I
F$y:Fy:c:07
a( > 2(1+y)
Fp=—(2y-A— =24\ — "%
VT 9y 1+ (1+y)2 (14 (1+y)2)?
At (1,-1):
Frp(l,—1) =2+ 1 =242 =0,
2(1 -1
Fyy(l,—l):2+)\-¥:2

(1+(1—1)2)°
Thus:
H,,F(1,~1) = (8 g)
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Example: 04 34
—

Definiteness on the Tangent Space:
The tangent space is:

ker Dg(z¢) = T (o) {w €R?: V(o) - w = 0}

Let w = <w1>' The condition:
w2

_ 1
Vg(1,-1) - w= e! 1w1 - mUQ =w; — w2 =0,
implies:
w1 = wa.

On the tangent space, let:

1
w=a (1) ) @ 7é 0. Department of
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Example: 04
—

35

Quadratic Form:

Compute:
0 0\ /1
w'Hy yF(1, -1 w=a(l 1) <0 2) <1> :

Simplify:

0

w'H, yF(1, - w=a? (1 1) <2

>:a2-2:2a2>0.

Since wl H, , F(1,—1)w > 0 for all w # 0 in the tangent space,

H, ,F(1,—1) is positive definite on the tangent space.

The Hessian is positive definite on the tangent space, confirming that
(1,—1) is a strict local minimum of f(z,y) under the constraint

g(z,y) = 0. Department of .
Mathematics —




Newton’s Method 36
—

Goal: Find the solution of the system:

f(z)=0, zeDCR", f:D—R"

Linearization:
Instead, solve the linear approximation at the point z!*:

Ty (x; x[k]) = f(x[k]) + Jf(a:[k])(x — x[k]) =0

= Jp(a™) (@ — 2l¥) = — f (M)

Use this x as the new approximation and iterate. The initial guess zl0)
must be provided.
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Newton’s Method 37
—

Iteration:
1. Compute f(z[).
2. Compute the Jacobian matrix Jy(z]).

3. Solve the linear system:
Jf(x[k]) A = —r(lF]
4. Update the solution:
k] = gk AlK]

Initial Guess: Start with z[% and iterate until convergence.
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Example: 05 38
—

To determine the minimum of the function:

2= F(z,y) :== 2° 4+ 2y* — 0.1 cos(z + y) — 3z + 2y,

Newton’s Method should be applied to the function
f(z,y) == VF(z,y)".
(a) Compute f(x,y) and the Jacobian matrix Jr(z,y).

(b) Formulate Newton’s Method and perform the first iteration step
by hand, using the starting vector:

(m[% yO) = (Oa 0)'

(c) Perform the iteration numerically and compute the solution to at
least ten decimal places of accuracy.
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Example: 05 39
—

_ (2z+0.1sin(z +y) —3
fay) = <4y+0.1sin(1‘+y) +2

7(0,0) = (‘23>

2+0.1xcos(x+y) 0.1xcos(xz+y)
0.1xcos(x+y) 4+0.1x%cos(z+y)

700 = (31 1)
J£(0,0) - Al = — (0,0) = <(2):1 2:1) ' @;) T <_23>

:L'[l] — :L'[O] _|_ A[O] D;ptahrtme:( of

Jp(z,y) = <




MATLAB Implementation
lllllll....----——

-

V]

40

format long

Function whose

k = 0;
x = 0; % Initial value
y = 0; % Initial value
for j = 1:5 Y, Number of Newton iterations
c = 0.1 % cos(x + y);
s = 0.1 % sin(x + y);
A= [2+ cc; ¢c 4 + cl]; ) Jacobian matrix
b=1[-2%x -8+ 3; 4%y -s-2]; 7
root is sought
% Newton iteration
dx = A \ b; 7 Solve the linear systen
k =k + 1;
x = x + dx(1, 1);
y =y + dx(2, 1);
end
% Gradient of the original function
g = b;
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Results of Iterations

41

—
Iteration (k) x Yy
0 0.00000000000000 | 0.00000000000000
1 1.45348837209302 | —0.52325581395349
2 1.45963647269063 | —0.52018176365468
3 1.45963810885761 | —0.52018094557119
4 1.45963810885773 | —0.52018094557114
) 1.45963810885773 | —0.52018094557114

Gradient of F' at point

g = 10715 . (—0.444089209850063, —0.222044604925031)

Since the Hessian matrix of F' (i.e., the Jacobian matrix of f) is
positive definite, this is indeed an approximation of a minimum.

217,
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