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Extrema with Equality Constraints 2

The goal is to find the extremal values of a C1 function

f : D ⊂ Rn → R

on the following subset of the domain:

G := {x ∈ D |g(x) = 0} ⊂ D,

with a C1 function

g : D → Rm

and m < n, i.e., the extremal values must additionally satisfy the m
equations

g(x) = (g1(x), . . . , gm(x))T = 0



Theorem: (Lagrange Multiplier Rule) 3

Let x0 ∈ D be a local extremum of the function f under the
constraint g(x0) = 0, satisfying the regularity condition

Rank Jg(x0) = m

Then there exist Lagrange multipliers λ1, . . . , λm,
such that the Lagrange function

F (x) := f(x) +

m∑
i=1

λigi(x)

satisfies the necessary first-order condition:

grad F (x0) = grad f(x0) +

m∑
i=1

λigrad gi(x
0) = 0.



Classification: (Min, Max, or Saddle Point) 4

A) Compact Admissible Set and Continuous f
If the admissible set is compact and f is continuous then Min/Max
are attained.
Candidate with the highest function value = global maximum.
Candidate with the smallest function value = global minimum.
B) Second-Order Conditions (in the case of two constraints)
Let x0 be admissible (i.e., g(x0) = h(x0) = 0), the regularity condition
is satisfied at x0, and assume:

∃λ, µ with ∇F (x0) = 0.

Define the Tangent Space:

TG(x0) = {w : ⟨w,∇g(x0)⟩ = 0 and ⟨w,∇h(x0)⟩ = 0}.



Classification: (Min, Max, or Saddle Point) 5

Necessary for a Local Minimum:

wTHF (x0)w ≥ 0, ∀w ∈ TG(x0) \ {0}.

Sufficient for a Local Minimum:

wTHF (x0)w > 0, ∀w ∈ TG(x0) \ {0}.

Necessary for a Local Maximum:

wTHF (x0)w ≤ 0, ∀w ∈ TG(x0) \ {0}.

Sufficient for a Local Maximum:

wTHF (x0)w < 0, ∀w ∈ TG(x0) \ {0}.



Classification: (Min, Max, or Saddle Point) 6

This means, in particular, that the necessary conditions for minima
(maxima) in the unconstrained case (i.e., positive (negative)
semi-definite Hessian matrix) are no longer strictly necessary here.
For example:
The Hessian matrix HF (x0) can have negative eigenvalues at a
minimum, as long as the corresponding eigenvectors do not represent
admissible directions (i.e., directions that lead out of the admissible
set).



Example: 01 7

Compute the extremal values of the function

f : R2 → R , f(x, y) = x+ y

on the circle x2 + y2 = 1.
a) Under the constraint

g(x, y) := x2 + y2 − 1 = 0

determine the extremal points of the function

f(x, y) = x+ y

using the Lagrange multiplier rule.



Example: 01 (a) 8

Regularity condition:

grad g(x, y) = (2x, 2y) = (0, 0) ⇒ (x, y) = (0, 0),

i.e., only (0, 0) violates the regularity condition.

Since g(0, 0) = −1, (0, 0) is not on the circle.

All feasible points, i.e., those with g(x, y) = 0,
satisfy the regularity condition

Rank(Jg(x, y)) = 1.



Example: 01 (a) 9

Lagrangian: F (x, y) = x+ y + λ(x2 + y2 − 1)

Lagrange Multiplier Rule:

(
∇F (x, y)
g(x, y)

)
=

 1 + 2λx
1 + 2λy

x2 + y2 − 1

 =

 0
0
0


Multiplying the first equation by y and the second by x and
subtracting both, we get

x− y = 0 ⇒ x = y.



Example: 01.(a) 10

From the third equation, we then obtain x2 + x2 = 1

⇒ x1,2 = ± 1√
2
, y1,2 = ± 1√

2
.

Extremal candidates:

P1 =
1√
2

(
1
1

)
, P2 = − 1√

2

(
1
1

)
.



Example: 01.(a) 11

Since the set g(x, y) = 0 describes a circle, it is compact.

Thus, the continuous function f attains a maximum and minimum on
g(x, y) = 0.

We have f(P1) =
√
2 and f(P2) = −

√
2.

So, P1 is a maximum and P2 is a minimum.



Example: 01.(a) 12
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Image: Constraint g(x, y) = x2 + y2 − 1 = 0
with level curves of the function f(x, y) = x+ y



Example: 01.(b) 13

b) Parametrization of the circle

g(x, y) := x2 + y2 − 1 = 0

by c and then solving the extremal problem
for h(t) := f(c(t)).



Example: 01.(b) 14

The circle is parametrized by polar coordinates(
x
y

)
=

(
cos t
sin t

)
=: c(t) , 0 ≤ t < 2π,

i.e., g(cos t, sin t) = 0.

Now, we just need to find the extrema of the function

h(t) := f(c(t)) = cos t+ sin t

h′(t) = − sin t+ cos t = 0 ⇒ tan t = 1

⇒ t1 =
π

4
, t2 =

5π

4



Example: 01.(b) 15

h′′(t) = − cos t− sin t

⇒ h′′(t1) = −
√
2 < 0 , h′′(t2) =

√
2

Thus,
t1 = π/4 is a maximum with h(t1) =

√
2

and
t2 = 5π/4 is a minimum with h(t2) = −

√
2.



Example: 01.(b) 16
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Figure: c(t) and f(c(t)) = cos t+ sin t



Example: 02 17

For the function

f(x, y, z) = z2

compute and classify the extrema on the intersection of the cylinder
x2 + y2 = 9 with the plane y = z using the Lagrange multipliers rule.

Constraints:
g1(x, y, z) := x2 + y2 − 9 and g2(x, y, z) := y − z .

Regularization condition:

Jg(x, y, z) =

(
2x 2y 0
0 1 −1

)
has rank < 2, when the first row is equal to the zero vector,



Example: 02 18

i.e., for the points (0, 0, z).

However, these are not feasible due to

g1(0, 0, z) = −9

So, all feasible points satisfy the regularization condition,
The Lagrange multiplier rule can be applied:

Lagrange function:

F (x, y, z) = z2 + λ1(x
2 + y2 − 9) + λ2(y − z)



Example: 02 19

Lagrange multiplier rule:

(
∇F (x, y, z)
g(x, y, z)

)
=


2λ1x

2λ1y + λ2

2z − λ2

x2 + y2 − 9
y − z

 =


0
0
0
0
0



1. Equation:
1. Case: x = 0
⇒ 0 = g1(0, y, z) = y2 − 9
⇒ y = 3 = z ∨ y = −3 = z



Example: 02 20

Extreme candidates: P1 =

 0
3
3

 , P2 =

 0
−3
−3


2. Case: λ1 = 0
⇒ λ2 = 0 ⇒ z = 0 = y ⇒ x = 3 ∨ x = −3

Extreme candidates: P3 =

 3
0
0

 , P4 =

 −3
0
0





Example: 02 21

The intersection of the cylinder x2 + y2 = 9 with the plane y = z
is an ellipse and therefore compact.

The continuous function f attains its absolute maximum and
minimum there.

Among the extreme candidates
are the absolute maximum and minimum.

The function values of the extreme candidates are

f(P1,2) = 9 , f(P3,4) = 0 .

So, P1,2 are absolute maxima, and P3,4 are absolute minima.



Example: 02 22
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Figure: f on the intersection of the cylinder x2 + y2 = 9 with the
plane y = z



Example: 03 [Old Exam Problem] 23

Determine the global extrema of the function:

f(x, y, z) = x− 8y + z

on the intersection of the two spherical surfaces:

g(x, y, z) = x2 + (y + 4)2 + z2 − 25 = 0

and
h(x, y, z) = x2 + y2 + z2 − 9 = 0.



Example: 03 [Solution Outline] 24

Regularity Condition (RC):

J(g, h)(x, y, z) =

(
gx gy gz
hx hy hz

)
=

(
2x 2(y + 4) 2z
2x 2y 2z

)
RC violated if:

α

 2x
2(y + 4)

2z

 =

2x
2y
2z

 ⇒


α = 1 ∨ x = 0

not satisfiable for α = 1

α = 1 ∨ z = 0

Thus, RC can only be violated for x = z = 0.

g(0, y, 0) = 0 + (y + 4)2 + 0− 25 = 0 ⇒ y = −4± 5,

h(0, y, 0) = 0 + y2 + 0− 9 = 0 ⇒ y = ±3.



Example: 03 25

Conclusion: The regularity condition is satisfied at all admissible
points.
With f(x, y, z) = x− 8y + z and the Lagrange function:

F = f + λg + µh,

we obtain the necessary conditions for extrema.
1) Fx = 0:
2) Fy = 0:
3) Fz = 0:
4) g = 0:

x2 + (y + 4)2 + z2 − 25 = 0,

5) h = 0:
x2 + y2 + z2 − 9 = 0.



Example: 03 26

From the last two equations, it follows:

(y + 4)2 − y2 = 16 ⇐⇒ 8y + 16 = 16 ⇐⇒ y = 0.

Substituting y = 0 into the second equation yields λ = 1, and
therefore:

I) 1 + 2x+ 2µx = 0,

II) 1 + 2z + 2µz = 0,

III) x2 + z2 − 9 = 0,

λ = 1, y = 0.



I - II:
(1 + µ)(x− z) = 0 ⇐⇒ µ = −1 or x = z.

For µ = −1: (I)
For x = z: (III)
Candidates and Function Values For f(x, y, z) = x− 8y + z:

P1 =


3√
2

0
3√
2

 , f(P1) = 3
√
2,

P2 =

− 3√
2

0
− 3√

2

 , f(P2) = −3
√
2.



Example: 03 28

Since the intersection of the two spherical surfaces (empty, a point, or
a circular boundary) is a compact set, the minimum and maximum of
the continuous function f are achieved. A comparison of the function
values shows that:

▶ P1: Global maximum.

▶ P2: Global minimum.



Example: 04 29

Given the optimization problem:

f(x, y) = x2 + y2 to minimize,

subject to the constraint:

g(x, y) = ex−1 − arctan(y + 1)− 1 = 0.

(a) Verify the regularity condition and demonstrate x0 = (1,−1)T ,
along with an appropriate multiplier λ, satisfies the requirements to
be an admissible and stationary point of the Lagrange function F .
(b) Investigate the Type of the Stationary Point
Investigate the stationary point (1,−1)T for its type. For this
purpose, set up the Hessian matrix HxF (x0) and check its definiteness
on the tangent space:

kerDg(x0) = TGg(x0).



Example: 04 30

Regularity Condition: The Jacobian of g(x, y) is the gradient:

Jg(x, y) = ∇g(x, y) =

(
ex−1,− 1

1 + (1 + y)2

)
.

For all (x, y) ∈ R2, the gradient:

∇g(x, y) ̸= (0, 0).

This means the rank of ∇g(x, y) is 1, satisfying the Regularity
Condition.
Admissibility:
The constraint is satisfied at the point x0 = (1,−1)T :

g(1,−1) = e1−1 − arctan(−1 + 1)− 1 = 1− 0− 1 = 0.



Example: 04 31

Lagrange Function:

F (x, y, λ) = f(x, y) + λg(x, y),

where:

F (x, y, λ) = x2 + y2 + λ
(
ex−1 − arctan(y + 1)− 1

)
.

Stationary Point:
To find a stationary point of F (x, y, λ), we compute:

∇F (1,−1, λ) = 0.

Compute the gradient:

∇F (x, y) =

(
2x+ λex−1, 2y − λ

1

1 + (1 + y)2

)
.



Example: 04 32

At x0 = (1,−1):

∇F (1,−1) =

(
2(1) + λe1−1, 2(−1)− λ

1

1 + (1− 1)2

)
= (2 + λ, −2− λ) .

Setting ∇F (1,−1) = 0, we find:

2 + λ = 0 ⇒ λ = −2.

Thus, x0 = (1,−1) is a stationary point.
Hessian Matrix: The Hessian matrix of F (x, y) is:

Hx,yF =

(
Fxx Fxy

Fyx Fyy

)
.

Compute the second derivatives:

Fxx =
∂

∂x
(2x+ λex−1) = 2 + λex−1,
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Fxy = Fyx = 0,

Fyy =
∂

∂y

(
2y − λ

1

1 + (1 + y)2

)
= 2 + λ · 2(1 + y)

(1 + (1 + y)2)2
.

At (1,−1):
Fxx(1,−1) = 2 + λe1−1 = 2 + λ = 0,

Fyy(1,−1) = 2 + λ · 2(1− 1)

(1 + (1− 1)2)2
= 2.

Thus:

Hx,yF (1,−1) =

(
0 0
0 2

)
.
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Definiteness on the Tangent Space:
The tangent space is:

kerDg(x0) = TG(x0) =
{
w ∈ R2 : ∇g(x0) · w = 0

}
.

Let w =

(
w1

w2

)
. The condition:

∇g(1,−1) · w = e1−1w1 −
1

1 + (1− 1)2
w2 = w1 − w2 = 0,

implies:
w1 = w2.

On the tangent space, let:

w = α

(
1
1

)
, α ̸= 0.
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Quadratic Form:
Compute:

wTHx,yF (1,−1)w = α
(
1 1

)(0 0
0 2

)(
1
1

)
.

Simplify:

wTHx,yF (1,−1)w = α2 ·
(
1 1

)(0
2

)
= α2 · 2 = 2α2 > 0.

Since wTHx,yF (1,−1)w > 0 for all w ̸= 0 in the tangent space,
Hx,yF (1,−1) is positive definite on the tangent space.
The Hessian is positive definite on the tangent space, confirming that
(1,−1) is a strict local minimum of f(x, y) under the constraint
g(x, y) = 0.



Newton’s Method 36

Goal: Find the solution of the system:

f(x) = 0, x ∈ D ⊂ Rn, f : D → Rn

Linearization:
Instead, solve the linear approximation at the point x[k]:

T1(x;x
[k]) = f(x[k]) + Jf (x

[k])(x− x[k]) = 0

⇒ Jf (x
[k])(x− x[k]) = −f(x[k])

Use this x as the new approximation and iterate. The initial guess x[0]

must be provided.



Newton’s Method 37

Iteration:

1. Compute f(x[k]).

2. Compute the Jacobian matrix Jf (x
[k]).

3. Solve the linear system:

Jf (x
[k]) ·∆[k] = −f(x[k])

4. Update the solution:

x[k+1] = x[k] +∆[k]

Initial Guess: Start with x[0] and iterate until convergence.
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To determine the minimum of the function:

z = F (x, y) := x2 + 2y2 − 0.1 cos(x+ y)− 3x+ 2y,

Newton’s Method should be applied to the function
f(x, y) := ∇F (x, y)T .

(a) Compute f(x, y) and the Jacobian matrix Jf (x, y).

(b) Formulate Newton’s Method and perform the first iteration step
by hand, using the starting vector:

(x0, y0) = (0, 0).

(c) Perform the iteration numerically and compute the solution to at
least ten decimal places of accuracy.
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f(x, y) =

(
2x+ 0.1 sin(x+ y)− 3
4y + 0.1 sin(x+ y) + 2

)
f(0, 0) =

(
−3
2

)

Jf (x, y) =

(
2 + 0.1 ∗ cos(x+ y) 0.1 ∗ cos(x+ y)
0.1 ∗ cos(x+ y) 4 + 0.1 ∗ cos(x+ y)

)
Jf (0, 0) =

(
2.1 0.1
0.1 4.1

)

Jf (0, 0) ·∆[0] = −f(0, 0) ⇐⇒
(
2.1 0.1
0.1 4.1

)
·
(
∆1

∆2

)
= −

(
−3
2

)
x[1] = x[0] +∆[0]



MATLAB Implementation 40

1 format long

2 k = 0;

3 x = 0; % Initial value

4 y = 0; % Initial value

5 for j = 1:5 % Number of Newton iterations

6 c = 0.1 * cos(x + y);

7 s = 0.1 * sin(x + y);

8 A = [2 + c c; c 4 + c]; % Jacobian matrix

9 b = [-2 * x - s + 3; -4 * y - s - 2]; % Function whose

root is sought

10 % Newton iteration

11 dx = A \ b; % Solve the linear system

12 k = k + 1;

13 x = x + dx(1, 1);

14 y = y + dx(2, 1);

15 end

16 % Gradient of the original function

17 g = b;



Results of Iterations 41

Iteration (k) x y

0 0.00000000000000 0.00000000000000

1 1.45348837209302 −0.52325581395349

2 1.45963647269063 −0.52018176365468

3 1.45963810885761 −0.52018094557119

4 1.45963810885773 −0.52018094557114

5 1.45963810885773 −0.52018094557114

Gradient of F at point x[5]:

g = 10−15 · (−0.444089209850063,−0.222044604925031)

Since the Hessian matrix of F (i.e., the Jacobian matrix of f) is
positive definite, this is indeed an approximation of a minimum.
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