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Extrema of Functions in Multiple Variables 2

—

Let’s consider a function f,

f:DcR* - R
x = f(z)

where x = (1, ,Zp).
Definition: For 2° € D, we define
» f has a global maximum at 2 if for all z € D, f(z) < f(29).

» f has a local maximum at 20 if there exists ¢ > 0 such that for
all z € D with ||z — 20| < e, f(x) < f(2).
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Extrema of Functions in Multiple Variables 3

—

» If the inequality f(x) < f(z") can be replaced by f(z) < f(z°)
for  # 2, it is a strict maximum at z°.

> If f(z) > f(zY) , and f(z) > f(2") , then it is a minimum at zV.

» f has an extremum at 20 if it is either a maximum or minimum.

» f has a stationary point at 2° € D if grad f(z") = 0.
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Theorem: First-Order Necessary Condition

—

Let f be a C! function in D°, and 2° € D° is a local extremum,

then
gradf(z") = 0.

For a twice-partially differentiable function,
foro (@) faia, (@)

Hf(x) = : :
fxnxl (:U) T fxnxn (I)

represents the Hessian matrix of f.
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Theorem: Second-Order Necessary Condition 5

—

If f is a C? function and 2° € DO is a stationary point, then:

1. If z° € D is a local minimum,
then H f(2°) is positive semidefinite.

2. If 2 € D is a local maximum,
then H f(2°) is negative semidefinite.
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Theorem: Second-Order Sufficient Condition 6

—

If f is a C? function and 2° € DO is a stationary point, then:
1. If Hf(z) is positive definite,
then 20 is a strict local minimum.

2. If Hf(2") is negative definite,
then 20 is a strict local maximum.

3. If Hf(2") is indefinite,
then 20 is a saddle point.
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Example: 01 7
—

Compute all stationary points of the following function and classify
them:

2 2

fla,y) = (a® —y?)e™™ ¥
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Example: 01 8
—

grad f(z,y) = e 7V (20(1 — 2% + ¢?), 2y(—1 — 22 + )T = (0,0)7
To compute the stationary points, we set f,(z,y) = 0 and consider all
cases.

Case 1: =0

= 0= f,(0,y) = e ¥ 2y(—1+y?)

= y=0 y=1 y=-1

= stationary points:

Plz(0,0), P2:(071)7 P3:(07_1)

Case 2: 1 — 2?4+ 9> =0= 22 =1+

= 0= fy(z,y) = e*(1+92)*y22y(—1 —(1+yH) +v?)
= —41/6_1_2?/2

=y=0 = z=1 z=-1

= stationary points: P; = (1,0), P5;=(—1,0)
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Example: 01 9

—
Hf(x,y) =
go-zt—y? (1 5% + 22t + y? — 222y 2zy(z? — %)
2zy(x? — y?) —1+ 5y% — 2y* — 22 + 22%?

Hf(0,0) = < (2) _g ) is indefinite

= P, =(0,0) is a saddle point.

Hf(0,+1) =2e! < (2) (2) ) is positive definite
= Pp3 = (0,%£1) are minima.

Hf(+1,0) = —2¢7! < (2) g ) is negative definite

= Py5 = (£1,0) are maxima.
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Example: 01 10

[T77
o,
0. i e
i v o
o

Department of
Mathematics @ —



Example: 02 11
—

Compute all stationary points of the following function and classify
them:

flz,y) =y(y* —3)
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Example: 02 12
—

grad f(z,y) = (0,3y* —=3)T = (0,0)7 = y==+1,z€R
The stationary points lie on the lines
Pi(z) = (z,1) and Py(z) = (x,—1).

i = (g g )

Hf(z,1) = 8 g > is positive semi definite

= Pi(z) = (z,1) are not local maxima.
0

= Py(x) = (z,—1) are not local minima.

f is independent of x,

i.e., for fixed y = ¢, f(x,c) = constant for all z € R.

is negative semidefinite
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Example: 02 13
—

The extrema are thus the ones of g(y) = y(y?> — 3),
i.e., all points on the line P;(z) = (x,1) are local minima and for
Py(x) = (z,—1) one obtains local maxima.
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Example: 03 14
—

Compute all stationary points of the following function and classify
them:

f(z,y) = sin(a? +4%)
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Example: 03 15
—

Solution: grad f(x,y) = 2cos(z? + y?)(x,y)T = (0,0)T
The stationary points are thus given by (0,0) and all points P, for
which 22 4+ y? = 7/2 + n7 with n € N.
H f(x, y) =
2 cos(z? + y?) — 4x? sin(2? + y?) —4zysin(z? + y?)
( —4xysin(z? + y?) 2 cos(z? + y?) — 4y? sin(z? + y?) )

Hf(0,0) = < (2) (2) > is positive definite

= (0,0) is a minimum.

[ —4a®sin(2?® +y?) —daysin(z? + y?)
Hf(P)= ( —4xy sin(x2 + yz) —4y? sin(a:2 + y2)
is semi definite, as det H f(P) = 0.
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Example: 03 16
—

We classify differently:

For points P on the circles 2 + y? = 7/2 + n7

we have sin(7/2 + nm) = (—1)".

Therefore, for even n there are maxima, and for odd n there are
minima on these circles.

Figure :  f(z,y) = sin(z? + y?)
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Example: 04 17
—

Given the function

f(z,y) = 8z* — 1022y + 3y°.

1. Calculate all stationary points of f

2. Try to apply the sufficient condition for the classification of
stationary points.

3. Show that f has a local minimum at the origin along every line
through the origin.

4. Does f also have a minimum at the origin along every parabola
y = ax? with a € R?
5. Plot the function, for example, using the MATLAB routines

‘ezsurf’ and ’ezcontour’.
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Example: 04.(1) 18

Solution:

grad f(x,y) = (4a(822 — by), —1022% + 6y)T =0

1. Case: =0

= 6y=0 = stationary point (xo,y0) = (0,0).

2. Case: 822 -5y =0

= y=82%/5 = —100>+6-82?/5=0 = 2 =0 The only
stationary point is thus (0,0).
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Example: 04.(2) 19

9622 — 20y —20x 0 0.
Hf(x,y)z( 90z 6 ) = Hf(O,O):(O 6)18
positive semi definite,
and the sufficient criterion is not applicable.
The necessary condition of order 2 leaves the possibilities of being a
minimum or a saddle point for the stationary point

(z0,%0) = (0,0).
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Example: 04. (3) 20

On the line z = 0, the function is described by

g(y) = f(0,y) = 3y>.

For y = 0, ¢ has a strict local minimum. All other origin lines can be
represented by y = ax with ¢ € R and the function is then described
by

h(z) == f(z,azx) = 82* — 10a2® + 3a’x>

For a = 0, h is minimal at x = 0. For @ # 0, a minimum is also
obtained at z = 0 because

B (z) = 322% — 30a2® + 6a’xz = K (0) =0

and
h'(z) = 962* — 60ax + 6a®> = h"(0) =6a> > 0.
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Example: 04. (4) 21

On the parabola y = az?, the function takes the form
p(z) == f(z,az?) = 82* — 10ax* + 3a%2*
= 2*(3a% — 10a + 8) = x*(a — 2)(3a — 4). This yields

p(r) = 423(a—2)3a—4) = p(0) = 0
p'(r) = 122%(a—2)(3a—4) = p’(0) = 0
p"(x) = 2dx(a—2)3a—4) = p"(0) = 0
P(z) =  24(a—2)(3a—4) = p"(0) = 24(a—2)(3a—4).

For a €]4/3,2], p"”"(0) < 0
and there is a strict maximum at z = 0.
For a ¢ [4/3,2], p""(0) > 0
and there is a strict minimum at x = 0.
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Example: 04. (4) 22

Thus, at the stationary point (0,0), it is a saddle point. If it were
known that

fla,y) = 2y — 32%)% — (y — 2*)?

, then on the origin parabola
2y — 322 =0

at x = 0, an immediate maximum
and on
Yy — z2=0

at z = 0, an immediate minimum would have been recognized and
then it would have been immediately inferred to be a saddle point.
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Example: 04.(5 23
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ezsurf('8*x* — 10 * 22 x y + 3 x 9%, [~1.5,1.5, —2.5,6])
Figure: f(z,y) = 82* — 1022y + 3y
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Example: 04.(5) 24

(2y-3:-(y-4)°

-2

-1 08 -06 -04 -02 0 02 04 06 08 1
x

ezcontour("8*x* — 10 * 22 x y + 3 * y?/,[-1,1, 2.5, 3])
Figure: f(z,y) = 82* — 1022y + 3y?
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Implicit Functions 25

—

The solvability of the system of equations is examined:

gl(‘rl"")xnaylw"aym) =0

gm(xla"'7x'rlay17"'7ym) = 07

briefly denoted as g(z,y) = 0, for the variable y € R™.
In this case, y would be expressible as a function of x,

In the equation g(x,y) = 0, the function f would be implicitly
contained.
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Theorem on Implicit Functions 26

—

Let g : D — R™ be a C! function defined on the open set and the set
D C R" x R™, and consider a point (z%,4°) € D where 2° € R" and

y? € R™ such that g(z%,¢y") = 0.
Furthermore, assume that the following m x m submatrix of

Jg(2°,4) is regular:

0 0
oy B G )
29 (a9,40) = :
8y ) * 89 ag .
ZIM 0 0y L. 20,0
oy, ©Y) g, oY)
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Theorem on Implicit Functions 27

—

Then there exist open sets U C R® and V € R™ with 20 € U, 4 € V,
and U x V C D, and a uniquely determined continuously
differentiable function:

U=V
such that,

Y’ = f(z%) and g(z, f(z)) =0 forall zecU.

The Jacobian matrix Jf is computed for all z € U
by differentiating the implicit equation g(z, f(x)) =0
(using the chain rule), which leads to the equation system:

Jg dg
%(x,f(x)) + %(x,f(x)) - Jf(z) =0.

Department of
Mathematics @ —



Implicit Representation of Plane Curves 28

For a C'-function ¢ : R? — R, the solution set given by

g(x,y) =0
is examined.

The solvability of the equation for one of the variables is guaranteed
when g, # 0 or g, # 0, that is,

grad g = (gzygy) 7é 0
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Implicit Representation of Plane Curves 29

The points (xg,yo) for which grad g(xo,yo) # 0 are therefore called
regular.
In regular points, the solution set

g=0

is described by a contour line.
In this context, a horizontal tangent is present at (z,yo) if

9(55073/0) = 07 gLE(xO?yO) = 07 gy(x(b yO) 7& 0

holds, and a vertical tangent for

9(zo,y0) =0,  gz(x0,%0) #0, gy(xo,90)=0.
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Implicit Representation of Plane Curves 30

The points (xg,yo) for which grad g(zo,yo) = 0 are called singular or
stationary.

Classification of singular points of g(z,y) = 0:

(x0,y0) is an isolated point if det Hg(xo,yo) > 0,
(20,Y0) is a double point if det Hg(xq,yo) < 0.
(x0,90) is a cusp point if det Hg(zo,yo) = 0.
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Exemple: 05 31
—

To investigate the curve implicitly defined by the level set
f(xay) = $3+y3 —TY = 07

we follow the instructions provided.

a) Determine the symmetries of the curve.

The curve is symmetric with respect to the bisector, meaning that
f(z,y) = f(y,z). We recall the reflection matrix S,:

o) w62

sin 2.7 — cos 2-m
4 4

-~

:Sw/4
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Example: 05 32
P——
(Vo) (5)-(2):

This reflects the point (x,y) across the line y = x.
b) Determine the points on the curve with a horizontal
tangent.

gradf(z,y) = (32> —y,3y* —x

)T

Points on the curve with a horizontal tangent are obtained from the
conditions

fx(x7y>:0 A f(x,y):O A fy(x73/)7é0
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Example: 05 33
—
0= folr,y) =322 -y = y=322 =
0= f(z,32%) = 23 + (322)% — 2322 = 23(272% — 2)
21/3
T3

0 1 21/3
= P0:<0>,P1:3(22/3>

Only for P; does the condition f,(F;) # 0 hold.

= x=0 V =z

Therefore, P; is a point with a horizontal tangent.
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Example: 05 34
—

c) Determine the points on the curve with a vertical tangent.

Points on the curve with a vertical tangent are obtained from the
conditions

fylzy) =0 A flz,y)=0 A folz,y) #0.

Ozfy(x,y):3y2—x = =32 =
0=fBy%y) = By»)?+y* —3y%y = > (27y* - 2)

0 1 22/3
- ne(2)on-3(5)
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Example: 05 35
—

Only for P, does the condition f,(P>) # 0 hold.

Therefore, P» is a point with a vertical tangent.

This can also be deduced without calculation from the symmetry.
d) Classify the singular points of the curve.

For Py = (0,0)”, gradf(0,0) = 0, making P, a singular point.

e = (% o) = mroo=( 0 )

Since det H f(0,0) = —1 < 0, Py is a double point.
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Example: 05 36
—

e) Draw the level set:
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Example: 05 37

\-/
0.5 . a
0
-0.5
1 -0.5 0 0.5

1

Figure: flzy) =23+ —ay=c
for ¢ = —2, -1, 0.5, —0.2, —0.025,0,0.05,0.2,0.5, 1
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