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Let’s consider a function f ,

f : D ⊂ Rn → R
x 7→ f(x)

where x = (x1, · · · , xn).

Definition: For x0 ∈ D, we define

▶ f has a global maximum at x0 if for all x ∈ D, f(x) ≤ f(x0).

▶ f has a local maximum at x0 if there exists ε > 0 such that for
all x ∈ D with ||x− x0|| < ε, f(x) ≤ f(x0).
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▶ If the inequality f(x) ≤ f(x0) can be replaced by f(x) < f(x0)
for x ̸= x0, it is a strict maximum at x0.

▶ If f(x) ≥ f(x0) , and f(x) > f(x0) , then it is a minimum at x0.

▶ f has an extremum at x0 if it is either a maximum or minimum.

▶ f has a stationary point at x0 ∈ D if grad f(x0) = 0.
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Let f be a C1 function in D0, and x0 ∈ D0 is a local extremum,
then

gradf(x0) = 0.

For a twice-partially differentiable function,

Hf(x) =

 fx1x1(x) · · · fx1xn(x)
...

...
fxnx1(x) · · · fxnxn(x)


represents the Hessian matrix of f .
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If f is a C2 function and x0 ∈ D0 is a stationary point, then:

1. If x0 ∈ D is a local minimum,
then Hf(x0) is positive semidefinite.

2. If x0 ∈ D is a local maximum,
then Hf(x0) is negative semidefinite.
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If f is a C2 function and x0 ∈ D0 is a stationary point, then:

1. If Hf(x0) is positive definite,
then x0 is a strict local minimum.

2. If Hf(x0) is negative definite,
then x0 is a strict local maximum.

3. If Hf(x0) is indefinite,
then x0 is a saddle point.



Example: 01 7

Compute all stationary points of the following function and classify
them:

f(x, y) = (x2 − y2)e−x2−y2
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grad f(x, y) = e−x2−y2(2x(1− x2 + y2), 2y(−1− x2 + y2))T = (0, 0)T

To compute the stationary points, we set fx(x, y) = 0 and consider all
cases.
Case 1: x = 0
⇒ 0 = fy(0, y) = e−y22y(−1 + y2)
⇒ y = 0, y = 1, y = −1
⇒ stationary points:

P1 = (0, 0), P2 = (0, 1), P3 = (0,−1)

Case 2: 1− x2 + y2 = 0 ⇒ x2 = 1 + y2

⇒ 0 = fy(x, y) = e−(1+y2)−y22y(−1− (1 + y2) + y2)

= −4ye−1−2y2

⇒ y = 0 ⇒ x = 1, x = −1
⇒ stationary points: P4 = (1, 0), P5 = (−1, 0)
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Hf(x, y) =

2e−x2−y2
(

1− 5x2 + 2x4 + y2 − 2x2y2 2xy(x2 − y2)
2xy(x2 − y2) −1 + 5y2 − 2y4 − x2 + 2x2y2

)
Hf(0, 0) =

(
2 0
0 −2

)
is indefinite

⇒ P1 = (0, 0) is a saddle point.

Hf(0,±1) = 2e−1

(
2 0
0 2

)
is positive definite

⇒ P2,3 = (0,±1) are minima.

Hf(±1, 0) = −2e−1

(
2 0
0 2

)
is negative definite

⇒ P4,5 = (±1, 0) are maxima.
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Figure : f(x, y) = (x2 − y2)e−x2−y2



Example: 02 11

Compute all stationary points of the following function and classify
them:

f(x, y) = y(y2 − 3)
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grad f(x, y) = (0, 3y2 − 3)T = (0, 0)T ⇒ y = ±1, x ∈ R
The stationary points lie on the lines
P1(x) = (x, 1) and P2(x) = (x,−1).

Hf(x, y) =

(
0 0
0 6y

)
Hf(x, 1) =

(
0 0
0 6

)
is positive semi definite

⇒ P1(x) = (x, 1) are not local maxima.

Hf(x,−1) =

(
0 0
0 −6

)
is negative semidefinite

⇒ P2(x) = (x,−1) are not local minima.
f is independent of x,
i.e., for fixed y = c, f(x, c) = constant for all x ∈ R.
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The extrema are thus the ones of g(y) = y(y2 − 3),
i.e., all points on the line P1(x) = (x, 1) are local minima and for
P2(x) = (x,−1) one obtains local maxima.
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Figure : f(x, y) = y(y2 − 3)
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Compute all stationary points of the following function and classify
them:

f(x, y) = sin(x2 + y2)
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Solution: grad f(x, y) = 2 cos(x2 + y2)(x, y)T = (0, 0)T

The stationary points are thus given by (0, 0) and all points P , for
which x2 + y2 = π/2 + nπ with n ∈ N0.
Hf(x, y) =(

2 cos(x2 + y2)− 4x2 sin(x2 + y2) −4xy sin(x2 + y2)
−4xy sin(x2 + y2) 2 cos(x2 + y2)− 4y2 sin(x2 + y2)

)
Hf(0, 0) =

(
2 0
0 2

)
is positive definite

⇒ (0, 0) is a minimum.

Hf(P ) =

(
−4x2 sin(x2 + y2) −4xy sin(x2 + y2)
−4xy sin(x2 + y2) −4y2 sin(x2 + y2)

)
is semi definite, as detHf(P ) = 0.
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We classify differently:
For points P on the circles x2 + y2 = π/2 + nπ
we have sin(π/2 + nπ) = (−1)n.
Therefore, for even n there are maxima, and for odd n there are
minima on these circles.
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Figure : f(x, y) = sin(x2 + y2)
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Given the function

f(x, y) = 8x4 − 10x2y + 3y2.

1. Calculate all stationary points of f

2. Try to apply the sufficient condition for the classification of
stationary points.

3. Show that f has a local minimum at the origin along every line
through the origin.

4. Does f also have a minimum at the origin along every parabola
y = ax2 with a ∈ R?

5. Plot the function, for example, using the MATLAB routines
’ezsurf’ and ’ezcontour’.
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Solution:
grad f(x, y) = (4x(8x2 − 5y),−10x2 + 6y)T = 0
1. Case: x = 0
⇒ 6y = 0 ⇒ stationary point (x0, y0) = (0, 0).
2. Case: 8x2 − 5y = 0
⇒ y = 8x2/5 ⇒ −10x2 + 6 · 8x2/5 = 0 ⇒ x = 0 The only
stationary point is thus (0, 0).
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Hf(x, y) =

(
96x2 − 20y −20x

−20x 6

)
⇒ Hf(0, 0) =

(
0 0
0 6

)
is

positive semi definite,
and the sufficient criterion is not applicable.
The necessary condition of order 2 leaves the possibilities of being a
minimum or a saddle point for the stationary point

(x0, y0) = (0, 0).
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On the line x = 0, the function is described by

g(y) := f(0, y) = 3y2.

For y = 0, g has a strict local minimum. All other origin lines can be
represented by y = ax with a ∈ R and the function is then described
by

h(x) := f(x, ax) = 8x4 − 10ax3 + 3a2x2

For a = 0, h is minimal at x = 0. For a ̸= 0, a minimum is also
obtained at x = 0 because

h′(x) = 32x3 − 30ax2 + 6a2x ⇒ h′(0) = 0

and
h′′(x) = 96x2 − 60ax+ 6a2 ⇒ h′′(0) = 6a2 > 0 .
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On the parabola y = ax2, the function takes the form
p(x) := f(x, ax2) = 8x4 − 10ax4 + 3a2x4

= x4(3a2 − 10a+ 8) = x4(a− 2)(3a− 4). This yields

p′(x) = 4x3(a− 2)(3a− 4) ⇒ p′(0) = 0
p′′(x) = 12x2(a− 2)(3a− 4) ⇒ p′′(0) = 0
p′′′(x) = 24x(a− 2)(3a− 4) ⇒ p′′′(0) = 0
p′′′′(x) = 24(a− 2)(3a− 4) ⇒ p′′′′(0) = 24(a− 2)(3a− 4) .

For a ∈ ]4/3, 2[, p′′′′(0) < 0
and there is a strict maximum at x = 0.
For a /∈ [4/3, 2], p′′′′(0) > 0
and there is a strict minimum at x = 0.
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Thus, at the stationary point (0, 0), it is a saddle point. If it were
known that

f(x, y) = (2y − 3x2)2 − (y − x2)2

, then on the origin parabola

2y − 3x2 = 0

at x = 0, an immediate maximum
and on

y − x2 = 0

at x = 0, an immediate minimum would have been recognized and
then it would have been immediately inferred to be a saddle point.
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The solvability of the system of equations is examined:

g1(x1, . . . , xn, y1, . . . , ym) = 0
...

gm(x1, . . . , xn, y1, . . . , ym) = 0 ,

briefly denoted as g(x, y) = 0, for the variable y ∈ Rm.

In this case, y would be expressible as a function of x,

In the equation g(x, y) = 0, the function f would be implicitly
contained.
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Let g : D → Rm be a C1 function defined on the open set and the set
D ⊂ Rn × Rm, and consider a point (x0, y0) ∈ D where x0 ∈ Rn and
y0 ∈ Rm such that g(x0, y0) = 0.

Furthermore, assume that the following m×m submatrix of
Jg(x0, y0) is regular:

∂g

∂y
(x0, y0) :=


∂g1
∂y1

(x0, y0) · · · ∂g1
∂ym

(x0, y0)

...
...

∂gm
∂y1

(x0, y0) · · · ∂gm
∂ym

(x0, y0)


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Then there exist open sets U ⊂ Rn and V ⊂ Rm with x0 ∈ U , y0 ∈ V ,
and U × V ⊂ D, and a uniquely determined continuously
differentiable function:

f : U → V

such that,

y0 = f(x0) and g(x, f(x)) = 0 for all x ∈ U .

The Jacobian matrix Jf is computed for all x ∈ U
by differentiating the implicit equation g(x, f(x)) = 0
(using the chain rule), which leads to the equation system:

∂g

∂x
(x, f(x)) +

∂g

∂y
(x, f(x)) · Jf(x) = 0.
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For a C1-function g : R2 → R, the solution set given by

g(x, y) = 0

is examined.

The solvability of the equation for one of the variables is guaranteed
when gx ̸= 0 or gy ̸= 0, that is,

grad g = (gx, gy) ̸= 0
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The points (x0, y0) for which grad g(x0, y0) ̸= 0 are therefore called
regular.
In regular points, the solution set

g = 0

is described by a contour line.
In this context, a horizontal tangent is present at (x0, y0) if

g(x0, y0) = 0, gx(x0, y0) = 0, gy(x0, y0) ̸= 0

holds, and a vertical tangent for

g(x0, y0) = 0, gx(x0, y0) ̸= 0, gy(x0, y0) = 0.
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The points (x0, y0) for which grad g(x0, y0) = 0 are called singular or
stationary.

Classification of singular points of g(x, y) = 0:

(x0, y0) is an isolated point if detHg(x0, y0) > 0,

(x0, y0) is a double point if detHg(x0, y0) < 0.

(x0, y0) is a cusp point if detHg(x0, y0) = 0.
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To investigate the curve implicitly defined by the level set

f(x, y) := x3 + y3 − xy = 0,

we follow the instructions provided.
a) Determine the symmetries of the curve.
The curve is symmetric with respect to the bisector, meaning that
f(x, y) = f(y, x). We recall the reflection matrix Sα:

cos

(
2 · π
4

)
sin

(
2 · π
4

)

sin

(
2 · π
4

)
− cos

(
2 · π
4

)


︸ ︷︷ ︸
=Sπ/4

(
x
y

)
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=

(
0 1
1 0

)(
x
y

)
=

(
y
x

)
.

This reflects the point (x, y) across the line y = x.
b) Determine the points on the curve with a horizontal
tangent.
gradf(x, y) = (3x2 − y, 3y2 − x)T

Points on the curve with a horizontal tangent are obtained from the
conditions

fx(x, y) = 0 ∧ f(x, y) = 0 ∧ fy(x, y) ̸= 0
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0 = fx(x, y) = 3x2 − y ⇒ y = 3x2 ⇒

0 = f(x, 3x2) = x3 + (3x2)3 − x3x2 = x3(27x3 − 2)

⇒ x = 0 ∨ x =
21/3

3

⇒ P0 =

(
0
0

)
, P1 =

1

3

(
21/3

22/3

)
.

Only for P1 does the condition fy(P1) ̸= 0 hold.

Therefore, P1 is a point with a horizontal tangent.
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c) Determine the points on the curve with a vertical tangent.

Points on the curve with a vertical tangent are obtained from the
conditions

fy(x, y) = 0 ∧ f(x, y) = 0 ∧ fx(x, y) ̸= 0.

0 = fy(x, y) = 3y2 − x ⇒ x = 3y2 ⇒

0 = f(3y2, y) = (3y2)3 + y3 − 3y2y = y3(27y3 − 2)

⇒ y = 0 ∨ y =
21/3

3

⇒ P0 =

(
0
0

)
, P2 =

1

3

(
22/3

21/3

)
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Only for P2 does the condition fx(P2) ̸= 0 hold.

Therefore, P2 is a point with a vertical tangent.

This can also be deduced without calculation from the symmetry.

d) Classify the singular points of the curve.

For P0 = (0, 0)T , gradf(0, 0) = 0, making P0 a singular point.

Hf(x, y) =

(
6x −1
−1 6y

)
⇒ Hf(0, 0) =

(
0 −1

−1 0

)

Since detHf(0, 0) = −1 < 0, P0 is a double point.
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e) Draw the level set:
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Figure: f(x, y) = x3 + y3 − xy = c
for c = −2,−1,−0.5,−0.2,−0.025, 0, 0.05, 0.2, 0.5, 1
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