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Exercise 1: (7 Points)

Determine and classify all local extrema of f : R2 → R

f(x, y) = 8x − 9
2y

under the constraint

g(x, y) = 16x2 + 9y2 − 25 = 0

using the Lagrange multiplier rule. First check the regularity condition.
Solution:

Regularity condition:
grad g(x, y) =

(
32x
18y

)
=
(

0
0

)
⇐⇒

(
x
y

)
=
(

0
0

)
The regularity condition is satisfied on the admissible set, since

(
0
0

)
is not an

admissible point.. [1 Point]

Hence a necessary condition for the (local) optimality is
grad F (x, y) = grad (f(x, y) + λg(x, y)) = 0 .

We have to solve the system of equations

fx + λgx = 8 + λ · 32x = 0, (=⇒ λ ̸= 0)

fy + λgy = − 9
2 + λ · 18y = 0

g(x, y) = 16x2 + 9y2 − 25 = 0 . [ 1 Point]

λ cannot be equal to 0. We obtain
I : 8 + 2 · 16λx = 0 =⇒ x = − 1

4λ

II : −9
2 + 2 · 9λy = 0 =⇒ y = 1

4λ
.

Hence y = −x . Inserting this into the third equation results in

g(x, x) = 16x2 + 9x2 − 25 != 0 =⇒ x2 = 1 .
This gives two candidates for local extrema:

P1 =
(

−1
1

)
, P2 =

(
1

−1

)
.

Computing the candidates : (3 Points)

Classification [ 2 Points]

The boundary of an ellipse is a compact set, therefore a comparison of the function
values is sufficient for classifikation.
f(−1, 1) = −8 − 9

2 = −25
2 , f(1, −1) = 8 + 9

2 = 25
2 .

In P1 we have a (the global) minimum and in P2 a (the global) maximum.
Alternatively one can calculate the Hessian
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H F (x, y) =
(

32λ 0
0 18λ

)

For P1 we calculate λ1 = 1
4 and

H F (−1, −1) =
(

8 0
0 9

2

)
(positive definite)

Here we have a minimum.
For P2 with λ2 = −1

4 one calculates

H F (1, 1) =
(

−8 0
0 −9

2

)
(negative definite)

Hence we have a maximum.
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Exercise 2: (4 Points)

Given the half circular ring
D :=

{
(x, y)T ∈ R2; 1 ≤ x2 + y2 ≤ 9, y ≥ 0

}
with mass density ρ(x, y) = 3 − y

compute the mass m of D .
Exercise:

Using polar coordinates
x = r cos(ϕ), y = r sin(ϕ), r ∈ [1, 3], ϕ ∈ [0, π] (1 Point)

we calculate the masse m

m =
∫ 3

1

∫ π

0
ρ(x(r, ϕ), y(r, ϕ)) r dϕdr

=
∫ 3

1

∫ π

0
(3 − r sin(ϕ)) r dϕdr (1Punkt)

=
∫ 3

1

[
3rϕ + r2 cos(ϕ)

]π
0

dr =
∫ 3

1

(
3r(π − 0) + r2(−1 − 1)

)
dr

= 3π

[
r2

2

]3

1
−
[

2r3

3

]3

1
= 3π

2 (9 − 1) −
(2

3(27 − 1)
)

(2 Points)

=12π − 52
3 .
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Exercise 3: (5 Points)

a) Show that there exists no potential for the function g : R3 → R3

g(x, y, z) = (x + 1
2yz , −y + z , −y).

b) Compute the line integral
∫

c
g(x, y, z)d(x, y, z)

along the curve

c(t) =

 t
sin( t

2)
cos( t

2)

 c : [0 , π] → R3.

Solution:

a) For example because of (g1)z ̸= 0 = (g3)x the Jacobian is not symmetric,
hence there exists no potential for g. (1 Point)

b) (4 Points) ċ (t) =

 1
1
2 cos( t

2)
−1

2 sin( t
2)

 , g ( c (t)) =

t + 1
2 sin( t

2) cos( t
2)

− sin( t
2) + cos( t

2)
− sin( t

2)

 .

< g(c(t)), ċ(t) > = t + 1
2 sin( t

2) cos( t

2)

+ 1
2 cos( t

2)
(

− sin( t

2) + cos( t

2)
)

− 1
2 sin( t

2)
(

− sin( t

2)
)

= t + 1
2

(
cos2( t

2) + sin2( t

2)
)

= t + 1
2 .∫

c
g(x, y, z)d(x, y, z) =

∫ π

0
< g(c(t)), ċ(t) > dt

=
∫ π

0
t + 1

2 dt =

= t2

2 + t

2

∣∣∣∣∣
π

0
= π2 + π

2 .
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Exercise 4: (1+3 Points)

Let f be the vector field

f : R2 → R2, f (x, y) =
(

xy + tan(e−x2)
x2 − cos(e−y2)

)

a) Compute curl f (x, y) .

b) For the mathematically positively oriented boundary ∂D of the triangle

D :=
{(

x
y

)
∈ R2 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 − x

}

compute the line Integral
∫

∂D
f (x, y) d(x, y) .

Solution:

a)
curl f (x, y) = (f2)x − (f1)y = 2x − x = x. (1 Point)

b) Green’s theorem gives:

I :=
∫

∂D
f (x, y) d(x, y) =

∫
D

rotf(x, y) d(x, y) (Ansatz: 1 Point)

Hence

I =
∫ 2

0

∫ 2−x

0
x dy dx =

∫ 2

0
x [y]2−x

0 dx (1 Point)

=
∫ 2

0
(2x − x2) dx =

[
x2 − x3

3

]2

0
= 4 − 8

3 = 4
3 . (1 Point)


