
Analysis III for engineering study programs

Jens Struckmeier

Department of Mathematics
Universität Hamburg

Technische Universität Hamburg
Wintersemester 2023/24

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 1 / 182



Content of the course Analysis III.

1 Partial derivatives, differential operators.

2 Vector fields, total differential, directional derivative.

3 Mean value theorems, Taylor’s theorem.

4 Extrem values, implicit function theorem.

5 Implicit rapresentaion of curves and surfces.

6 Extrem values under equality constraints.

7 Newton–method, non-linear equations and the least squares method.

8 Multiple integrals, Fubini’s theorem, transformation theorem.

9 Potentials, Green’s theorem, Gauß’s theorem.

10 Green’s formulas, Stokes’s theorem.

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 2 / 182



Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

f (x1, . . . , xn) a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT .

Each of the 3 quantities p (pressure), V (volume) and T (emperature)
can be expressed as a function of the others (R is the gas constant)

p = p(V , t) =
RT

V

V = V (p,T ) =
RT

p

T = T (p,V ) =
pV

R

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 3 / 182



1.1. Partial derivatives

Definition: Let D ⊂ Rn be open, f : D → R, x0 ∈ D.

f is called partially differentiable in x0 with respect to xi if the limit

∂f

∂xi
(x0) := lim

t→0

f (x0 + tei )− f (x0)

t

= lim
t→0

f (x0
1 , . . . , x

0
i + t, . . . , x0

n )− f (x0
1 , . . . , x

0
i , . . . , x

0
n )

t

exists. ei denotes the i–th unit vector. The limit is called partial derivative of
f with respect to xi at x0.

If at every point x0 the partial derivatives with respect to every variable
xi , i = 1, . . . , n exist and if the partial derivatives are continuous functions
then we call f continuous partial differentiable or a C1–function.
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Examples.

Consider the function

f (x1, x2) = x2
1 + x2

2

At any point x0 ∈ R2 there exist both partial derivatives and both
partial derivatives are continuous:

∂f

∂x1
(x0) = 2x1,

∂f

∂x2
(x0) = 2x2

Thus f is a C1–function.

The function
f (x1, x2) = x1 + |x2|

at x0 = (0, 0)T is partial differentiable with respect to x1, but the
partial derivative with respect to x2 does not exist!
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An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

p(x , t) = A sin(αx − ωt)

The partial derivative

∂p

∂x
= αA cos(αx − ωt)

describes at a given time t the spacial rate of change of the pressure.

The partial derivative

∂p

∂t
= −ωA cos(αx − ωt)

describes for a fixed position x the temporal rate of change of the acoustic
pressure.
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Rules for differentiation

Let f , g be differentiable with respect to xi and α, β ∈ R, then we have the
rules

∂

∂xi

(
αf (x) + βg(x)

)
= α

∂f

∂xi
(x) + β

∂g

∂xi
(x)

∂

∂xi

(
f (x) · g(x)

)
=

∂f

∂xi
(x) · g(x) + f (x) · ∂g

∂xi
(x)

∂

∂xi

(
f (x)

g(x)

)
=

∂f

∂xi
(x) · g(x)− f (x) · ∂g

∂xi
(x)

g(x)2
for g(x) 6= 0

An alternative notation for the partial derivatives of f with respect to xi at
x0 is given by

Di f (x0) oder fxi (x0)
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Gradient and nabla–operator.

Definition: Let D ⊂ Rn be an open set and f : D → R partial
differentiable.

We denote the row vector

grad f (x0) :=

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
as gradient of f at x0.

We denote the symbolic vector

∇ :=
( ∂

∂x1
, . . . ,

∂

∂xn

)T
as nabla–operator.

Thus we obtain the column vector

∇f (x0) :=

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)T
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More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on
differentiation hold true:

grad (αf + βg) = α · grad f + β · grad g

grad (f · g) = g · grad f + f · grad g

grad

(
f

g

)
=

1

g2
(g · grad f − f · grad g), g 6= 0

Examples:

Let f (x , y) = ex · sin y . Then:

grad f (x , y) = (ex · sin y , ex · cos y) = ex(sin y , cos y)

For r(x) := ‖x‖2 =
√
x2

1 + · · ·+ x2
n we have

grad r(x) =
x

r(x)
=

x

‖x‖2
für x 6= 0,

where x = (x1, . . . , xn) denotes a row vector.
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Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all
coordinates) is not necessarily a continuous function.

Example: Consider the function f : R2 → R defined as

f (x , y) :=


x · y

(x2 + y2)2
: for (x , y) 6= 0

0 : for (x , y) = 0

The function is partial differntiable on the entire R2 and we have

fx(0, 0) = fy (0, 0) = 0

∂f

∂x
(x , y) =

y

(x2 + y2)2
− 4

x2y

(x2 + y2)3
, (x , y) 6= (0, 0)

∂f

∂y
(x , y) =

x

(x2 + y2)2
− 4

xy2

(x2 + y2)3
, (x , y) 6= (0, 0)
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Example (continuation).

We calculate the partial derivatives at the origin (0, 0):

∂f

∂x
(0, 0) = lim

t→0

f (t, 0)− f (0, 0)

t
=

t · 0
(t2 + 02)2

− 0

t
= 0

∂f

∂y
(0, 0) = lim

t→0

f (0, t)− f (0, 0)

t
=

0 · t
(02 + t2)2

− 0

t
= 0

But: At (0, 0) the function is not continuous since

lim
n→∞

f

(
1

n
,

1

n

)
=

1
n ·

1
n(

1
n ·

1
n + 1

n ·
1
n

)2 =
1
n2

4
n4

=
n2

4
→∞

and thus we have
lim

(x,y)→(0,0)
f (x , y) 6= f (0, 0) = 0
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Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need
additional conditions on f .

Theorem: Let D ⊂ Rn be an open set. Let f : D → R be partial
differentiable in a neighborhood of x0 ∈ D and let the partial derivatives
∂f

∂xi
, i = 1, . . . , n, be bounded. Then f is continuous in x0.

Attention: In the previous example the partial derivatives are not bounded
in a neighborhood of (0, 0) since

∂f

∂x
(x , y) =

y

(x2 + y2)2
− 4

x2y

(x2 + y2)3
für (x , y) 6= (0, 0)
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Proof of the theorem.

For ‖x− x0‖∞ < ε, ε > 0 sufficiently small we write:

f (x)− f (x0) = (f (x1, . . . , xn−1, xn)−f (x1, . . . , xn−1, x
0
n ))

+ (f (x1, . . . , xn−1, x
0
n )− f (x1, . . . , xn−2, x

0
n−1, x

0
n ))

...

+ (f (x1, x
0
2 , . . . , x

0
n )− f (x0

1 , . . . , x
0
n ))

For any difference on the right hand side we consider f as a function in one single
variable:

g(xn)− g(x0
n ) := f (x1, . . . , xn−1, xn)− f (x1, . . . , xn−1, x

0
n )

Since f is partial differentiable g is differentiable and we can apply the mean
value theorem on g :

g(xn)− g(x0
n ) = g ′(ξn)(xn − x0

n )

for an appropriate ξn between xn and x0
n .
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Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

f (x)− f (x0) =
∂f

∂xn
(x1, . . . , xn−1, ξn) · (xn − x0

n )

+
∂f

∂xn−1
(x1, . . . , xn−2, ξn−1, x

0
n ) · (xn−1 − x0

n−1)

...

+
∂f

∂x1
(ξ1, x

0
2 , . . . , x

0
n ) · (x1 − x0

1 )

Using the boundedness of the partial derivatives

|f (x)− f (x0)| ≤ C1|x1 − x0
1 |+ · · ·+ Cn|xn − x0

n |

for ‖x− x0‖∞ < ε, we obtain the continuity of f at x0 since

f (x)→ f (x0) für ‖x− x0‖∞ → 0
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Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open
set D ⊂ Rn. If the partial derivatives are differentiable we obtain (by
differentiating) the partial derivatives of second order of f with

∂2f

∂xj∂xi
:=

∂

∂xj

(
∂f

∂xi

)
Example: Second order partial derivatives of a function f (x , y):

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
,

∂2f

∂x∂y
,

∂2f

∂y2

Let i1, . . . , ik ∈ {1, . . . , n}. Then we define recursively

∂k f

∂xik∂xik−1
. . . ∂xi1

:=
∂

∂xik

(
∂k−1f

∂xik−1
∂xik−2

. . . ∂xi1

)
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Higher order derivatives.

Definition: The function f is called k–times partial differentiable, if all
derivatives of order k,

∂k f

∂xik∂xik−1
. . . ∂xi1

for all i1, . . . , ik ∈ {1, . . . , n},

exist on D.

Alternative notation:

∂k f

∂xik∂xik−1
. . . ∂xi1

= DikDik−1
. . .Di1 f = fxi1 ...xik

If all the derivatives of k–th order are continuous the function f is called k–times
continuous partial differentiable or called a Ck–function on D. Continuous
functions f are called C0–functions.

Example: For the function f (x1, . . . , xn) =
n∏

i=1

x ii we have ∂nf
∂xn...∂x1

=?
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Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general
not arbitrarely exchangeable!

Example: For the function

f (x , y) :=


xy

x2 − y2

x2 + y2
: for (x , y) 6= (0, 0)

0 : for (x , y) = (0, 0)

we calculate

fxy (0, 0) =
∂

∂y

(
∂f

∂x
(0, 0)

)
= −1

fyx(0, 0) =
∂

∂x

(
∂f

∂y
(0, 0)

)
= +1

i.e. fxy (0, 0) 6= fyx(0, 0).
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Theorem of Schwarz on exchangeablity.

Satz: Let D ⊂ Rn be open and let f : D → R be a C2–function. Then it
holds

∂2f

∂xj∂xi
(x1, . . . , xn) =

∂2f

∂xi∂xj
(x1, . . . , xn)

for all i , j ∈ {1, . . . , n}.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C k–function, then we can exchange the differentiation in order to
calculate partial derivatives up to order k arbitrarely!

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 18 / 182



Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order fxyz for the function

f (x , y , z) = y2z sin(x3) + (cosh y + 17ex
2

)z2

The order of execution is exchangealbe since f ∈ C3.

Differentiate first with respect to z :

∂f

∂z
= y2 sin(x3) + 2z(cosh y + 17ex

2

)

Differentiate then fz with respect to x (then cosh y disappears):

fzx =
∂

∂x

(
y2 sin(x3) + 2z(cosh y + 17ex

2

)
)

= 3x2y2 cos(x3) + 68xzex
2

For the partial derivative of fzx with respect to y we obtain

fxyz = 6x2y cos(x3)
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The Laplace operator.

The Laplace–operator or Laplacian is defined as

∆ :=
n∑

i=1

∂2

∂x2
i

For a scalar function u(x) = u(x1, . . . , xn) we have

∆u =
n∑

i=1

∂2u

∂x2
i

= ux1x1 + · · ·+ uxnxn

Examples of important partial differential equations of second order (i.e.
equations containing partial derivatives up to order two):

∆u − 1

c2
utt = 0 (wave equation)

∆u − 1

k
ut = 0 (heat equation)

∆u = 0 (Laplace–equation or equation for the potential)
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Vector valued functions.

Definition: Let D ⊂ Rn be open and let f : D → Rm be a vector valued
function.

The function f is called partial differentiable on x0 ∈ D, if for all
i = 1, . . . , n the limits

∂f

∂xi
(x0) = lim

t→0

f(x0 + tei )− f(x0)

t

exist. The calculation is done componentwise

∂f

∂xi
(x0) =


∂f1
∂xi

...
∂fm
∂xi

 for i = 1, . . . , n
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Vectorfields.

Definition: If m = n the function f : D → Rn is called a vectorfield on D.
If every (coordinate-) function fi (x) of f = (f1, . . . , fn)T is a Ck–function,
then f is called Ck–vectorfield.

Examples of vectorfields:

• velocity fields of liquids or gases;
• elektromagnetic fields;
• temperature gradients in solid states.

Definition: Let f : D → Rn be a partial differentiable vector field. The
divergence on x ∈ D is defined as

div f(x0) :=
n∑

i=1

∂fi
∂xi

(x0)

or
div f(x) = ∇T f(x) = (∇, f(x))
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Rules of computation and the curl.

The following rules hold true:

div (α f + β g) = α div f + β div g for f, g : D → Rn

div (ϕ · f) = (∇ϕ, f) + ϕ div f for ϕ : D → R, f : D → Rn

Remark: Let f : D → R be a C2–function, then for the Laplacian we have

∆f = div (∇f )

Definition: Let D ⊂ R3 open and f : D → R3 a partial differentiable
vector field. We define the curl as

curl f(x0) :=

(
∂f3
∂x2
− ∂f2
∂x3

,
∂f1
∂x3
− ∂f3
∂x1

,
∂f2
∂x1
− ∂f1
∂x2

)T
∣∣∣∣∣
x0
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Alternative notations and additional rules.

curl f(x) = ∇× f(x) =

∣∣∣∣∣∣∣∣
e1 e2 e3

∂
∂x1

∂
∂x2

∂
∂x3

f1 f2 f3

∣∣∣∣∣∣∣∣
Remark: The following rules hold true:

curl (α f + β g) = α curl f + β curl g

curl (ϕ · f) = (∇ϕ)× f + ϕ curl f

Remark: Let D ⊂ R3 and ϕ : D → R be a C2–function. Then

curl (∇ϕ) = 0 ,

using the exchangeability theorem of Schwarz. I.e. gradient fileds are curl-free
everywhere.
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Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let D ⊂ Rn open, x0 ∈ D and f : D → Rm. The function f(x)
is called differentiable in x0 (or totally differentiable in x0), if there exists a
linear map

l(x, x0) := A · (x− x0)

with a matrix A ∈ Rm×n which satisfies the following approximation
property

f(x) = f(x0) + A · (x− x0) + o(‖x− x0‖)

i.e.

lim
x→x0

f(x)− f(x0)− A · (x− x0)

‖x− x0‖
= 0.
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The total differential and the Jacobian matrix.

Notation: We call the linear map l the differential or the total differential
of f(x) at the point x0. We denote l by df(x0).

The related matrix A is called Jacobi–matrix of f(x) at the point x0 and is
denoted by J f(x0) (or Df(x0) or f ′(x0)).

Remark: For m = n = 1 we obtain the well known relation

f (x) = f (x0) + f ′(x0)(x − x0) + o(|x − x0|)

for the derivative f ′(x0) at the point x0.

Remark: In case of a scalar function (m = 1) the matrix A = a is a row
vextor and a(x− x0) a scalar product 〈aT , x− x0〉.
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Total and partial differentiability.

Theorem: Let f : D → Rm, x0 ∈ D ⊂ Rn, D open.

a) If f(x) is differentiable in x0, then f(x) is continuous in x0.

b) If f(x) is differentiable in x0, then the (total) differential and thus the
Jacobi–matrix are uniquely determined and we have

J f(x0) =


∂f1
∂x1

(x0) . . .
∂f1
∂xn

(x0)

...
...

∂fm
∂x1

(x0) . . .
∂fm
∂xn

(x0)

 =


Df1(x0)

...

Dfm(x0)



c) If f(x) is a C1–function on D, then f(x) is differentiable on D.
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Proof of a).

If f is differentiable in x0, then by definition

lim
x→x0

f(x)− f(x0)− A · (x− x0)

‖x− x0‖
= 0

Thus we conclude

lim
x→x0
‖f(x)− f(x0)− A · (x− x0)‖ = 0

and we obtain

‖f(x)− f(x0)‖ ≤ ‖f(x)− f(x0)− A · (x− x0)‖+ ‖A · (x− x0)‖

→ 0 as x→ x0

Therefore the function f is continuous at x0.
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Proof of b).

Let x = x0 + tei , |t| < ε, i ∈ {1, . . . , n}. Since f in differentiable at x0, we
have

lim
x→x0

f(x)− f(x0)− A · (x− x0)

‖x− x0‖∞
= 0

We write

f(x)− f(x0)− A · (x− x0)

‖x− x0‖∞
=

f(x0 + tei )− f(x0)

|t|
− tAei
|t|

=
t

|t|
·
(

f(x0 + tei )− f(x0)

t
− Aei

)
→ 0 as t → 0

Thus

lim
t→0

f(x0 + tei )− f(x0)

t
= Aei i = 1, . . . , n
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Examples.

Consider the scalar function f (x1, x2) = x1e
2x2 . Then the Jacobian is given

by:
Jf (x1, x2) = Df (x1, x2) = e2x2 (1, 2x1)

Consider the function f : R3 → R2 defined by

f(x1, x2, x3) =

(
x1x2x3

sin(x1 + 2x2 + 3x3)

)

The Jacobian is given by

Jf(x1, x2, x3) =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

 =

(
x2x3 x1x3 x1x2

cos(s) 2 cos(s) 3 cos(s)

)

with s = x1 + 2x2 + 3x3.
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Further examples.

Let f(x) = Ax, A ∈ Rm×n and x ∈ Rn. Then

Jf(x) = A for all x ∈ Rn

Let f (x) = xTAx = 〈x,Ax〉, A ∈ Rn×n and x ∈ Rn.
Then we have

∂f

∂xi
= 〈ei ,Ax〉+ 〈x,Aei 〉

= eTi Ax + xTAei

= xT (AT + A)ei

We conclude
Jf (x) = gradf (x) = xT (AT + A)
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Rules for the differentiation.

Theorem:

a) Linearity: LET f, g : D → Rm be differentiable in x0 ∈ D, D open. Then
α f(x0) + β g(x0), and α, β ∈ R are differentiable in x0 and we have

d(αf + βg)(x0) = α df(x0) + β dg(x0)

J(αf + βg)(x0) = α Jf(x0) + β Jg(x0)

b) Chain rule: Let f : D → Rm be differentiable in x0 ∈ D, D open. Let
g : E → Rk be differentiable in y0 = f (x0) ∈ E ⊂ Rm, E open. Then g ◦ f is
differentiable in x0.

For the differentials it holds

d(g ◦ f)(x0) = dg(y0) ◦ df(x0)

and analoglously for the Jacobian matrix

J(g ◦ f)(x0) = Jg(y0) · Jf(x0)
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Examples for the chain rule.

Let I ⊂ R be an intervall. Let h : I → Rn be a curve, differentiable in
t0 ∈ I with values in D ⊂ Rn, D open. Let f : D → R be a scalar function,
differentiable in x0 = h(t0).

Then the composition

(f ◦ h)(t) = f (h1(t), . . . , hn(t))

is differentiable in t0 and we have for the derivative:

(f ◦ h)′(t0) = Jf (h(t0)) · Jh(t0)

= gradf (h(t0)) · h′(t0)

=
n∑

k=1

∂f

∂xk
(h(t0)) · h′k(t0)
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Directional derivative.

Definition: Let f : D → R, D ⊂ Rn open, x0 ∈ D, and v ∈ R \ {0} a
vector. Then

Dv f (x0) := lim
t→0

f (x0 + tv)− f (x0)

t

is called the directional derivative (Gateaux–derivative) of f (x) in the
direction of v.

Example: Let f (x , y) = x2 + y2 and v = (1, 1)T . Then the directional
derivative in the direction of v is given by:

Dv f (x , y) = lim
t→0

(x + t)2 + (y + t)2 − x2 − y2

t

= lim
t→0

2xt + t2 + 2yt + t2

t

= 2(x + y)
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Remarks.

For v = ei the directional derivative in the direction of v is given by the
partial derivative with respect to xi :

Dv f (x0) =
∂f

∂xi
(x0)

If v is a unit vector, i.e. ‖v‖ = 1, then the directional derivative Dv f (x0)
describes the slope of f (x) in the direction of v.

If f (x) is differentiable in x0, then all directional derivatives of f (x) in x0

exist. With h(t) = x0 + tv we have

Dv f (x0) =
d

dt
(f ◦ h)|t=0 = grad f (x0) · v

This follows directely applying the chain rule.
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Properties of the gradient.

Theorem: Let D ⊂ Rn open, f : D → R differentiable in x0 ∈ D. Then we have

a) The gradient vector grad f (x0) ∈ Rn is orthogonal in the level set

Nx0 := {x ∈ D | f (x) = f (x0)}

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the
level sets equipotential surfaces.

2) The gradient grad f (x0) gives the direction of the steepest slope of f (x) in
x0.

Idea of the proof:

a) application of the chain rule.

b) for an arbitrary direction v we conclude with the Cauchy–Schwarz inequality

|Dv f (x0)| = |(grad f (x0), v)| ≤ ‖grad f (x0)‖2

Equality is obtained for v = grad f (x0)/‖grad f (x0)‖2.
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Curvilinear coordinates.

Definition: Let U,V ⊂ Rn be open and Φ : U → V be a C1-map, for
which the Jacobimatrix JΦ(u0) is regular (invertible) at every u0 ∈ U.

In addition there exists the inverse map Φ−1 : V → U and the inverse map
is also a C1–map.

Then x = Φ(u) defines a coodinate transformation from the coordinates u
to x.

Example: Consider for n = 2 the polar coordinates u = (r , ϕ) with r > 0
and −π < ϕ < π and set

x = r cosϕ

y = r sinϕ

with the cartesian coordinates x = (x , y).
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Calculation of the partial derivatives.

For all u ∈ U with x = Φ(u) the following relations hold

Φ−1(Φ(u)) = u

J Φ−1(x) · J Φ(u) = In (chain rule)

J Φ−1(x) = (J Φ(u))−1

Let f̃ : V → R be a given function. Set

f (u) := f̃ (Φ(u))

the by using the chain rule we obtain

∂f

∂ui
=

n∑
j=1

∂ f̃

∂xj

∂Φj

∂ui
=:

n∑
j=1

g ij ∂ f̃

∂xj

with

g ij :=
∂Φj

∂ui
, G(u) := (g ij) = (J Φ(u))T
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Notations.

We use the short notation

∂

∂ui
=

n∑
j=1

g ij ∂

∂xj

Analogously we can express the partial derivatives with respect to xi by the
partial derivatives with respect to uj

∂

∂xi
=

n∑
j=1

gij
∂

∂uj

where
(gij) := (g ij)−1 = (J Φ)−T = (J Φ−1)T

We obtain these relations by applying the chain rule on Φ−1.
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Example: polar coordinates.

We consider polar coordinates

x = Φ(u) =

(
r cosϕ
r sinϕ

)
We calculate

J Φ(u) =

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
and thus

(g ij) =


cosϕ sinϕ

−r sinϕ r cosϕ

 (gij) =


cosϕ −1

r
sinϕ

sinϕ
1

r
cosϕ
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Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

∂

∂x
= cosϕ

∂

∂r
− 1

r
sinϕ

∂

∂ϕ

∂

∂y
= sinϕ

∂

∂r
+

1

r
cosϕ

∂

∂ϕ

Example: Calculation of the Laplacian–operator in polar coordinates

∂2

∂x2
= cos2 ϕ

∂2

∂r2
− sin(2ϕ)

r

∂2

∂r∂ϕ
+

sin2 ϕ

r2

∂2

∂ϕ2
+

sin(2ϕ)

r2

∂

∂ϕ
+

sin2 ϕ

r

∂

∂r

∂2

∂y2
= sin2 ϕ

∂2

∂r2
+

sin(2ϕ)

r

∂2

∂r∂ϕ
+

cos2 ϕ

r2

∂2

∂ϕ2
− sin(2ϕ)

r2

∂

∂ϕ
+

cos2 ϕ

r

∂

∂r

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r2

∂2

∂ϕ2
+

1

r

∂

∂r
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Example: spherical coordinates.

We consider spherical coordinates

x = Φ(u) =


r cosϕ cos θ

r sinϕ cos θ

r sin θ


The Jacobian–matrix is given by:

J Φ(u) =


cosϕ cos θ −r sinϕ cos θ −r cosϕ sin θ

sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ

sin θ 0 r cos θ
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Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

∂

∂x
= cosϕ cos θ

∂

∂r
− sinϕ

r cos θ

∂

∂ϕ
− 1

r
cosϕ sin θ

∂

∂θ

∂

∂y
= sinϕ cos θ

∂

∂r
+

cosϕ

r cos θ

∂

∂ϕ
− 1

r
sinϕ sin θ

∂

∂θ

∂

∂z
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

Example: calculation of the Laplace–operator in spherical coordinates

∆ =
∂2

∂r2
+

1

r2 cos2 θ

∂2

∂ϕ2
+

1

r2

∂2

∂θ2
+

2

r

∂

∂r
− tan θ

r2

∂

∂θ
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Chapter 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let f : D → R be a scalar differentiable
function on an open set D ⊂ Rn. Let a, b ∈ D be points in D such that the
connecting line segment

[a, b] := {a + t(b− a) | t ∈ [0, 1]}

lies entirely in D. Then there exits a number θ ∈ (0, 1) with

f (b)− f (a) = grad f (a + θ(b− a)) · (b− a)

Proof: We set
h(t) := f (a + t(b− a))

with the mean value theorem for a single variable and the chain rules we conclude

f (b)− f (a) = h(1)− h(0) = h′(θ) · (1− 0)

= grad f (a + θ(b− a)) · (b− a)
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Definition and example.

Definition: If the condition [a, b] ⊂ D holds true for all points a, b ∈ D,
then the set D is called convex.

Example for the mean value theorem: Given a scalar function

f (x , y) := cos x + sin y

It is
f (0, 0) = f (π/2, π/2) = 1 ⇒ f (π/2, π/2)− f (0, 0) = 0

Applying the mean value theorem there exists a θ ∈ (0, 1) with

grad f

(
θ

(
π/2
π/2

))
·
(
π/2
π/2

)
= 0

Indeed this is true for θ = 1
2 .
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Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true
for scalar functions but in general not for vector–valued functions!

Examples: Consider the vector–valued Function

f(t) :=

(
cos t
sin t

)
, t ∈ [0, π/2]

It is

f(π/2)− f(0) =

(
0
1

)
−
(

1
0

)
=

(
−1

1

)
and

f ′
(
θ
π

2

)
·
(π

2
− 0
)

=
π

2

(
− sin(θπ/2)

cos(θπ/2)

)
BUT: the vectors on the right hand side have lenght

√
2 and π/2 !
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A mean value estimate for vector–valued functions.

Theorem: Let f : D → Rm be differentiable on an open set D ⊂ Rn. Let
a, b bei points in D with [a, b] ⊂ D. Then there exists a θ ∈ (0, 1) with

‖f(b)− f(a)‖2 ≤ ‖J f(a + θ(b− a)) · (b− a)‖2

Idea of the proof: Application of the mean value theorem to the scalar function
g(x) definid as

g(x) := (f(b)− f(a))T f(x) (scalar product!)

Remark: Another (weaker) for of the mean value estimate is

‖f(b)− f(a)‖ ≤ sup
ξ∈[a,b]

‖J f(ξ))‖ · ‖(b− a)‖

where ‖ · ‖ denotes an arbitrary vector norm with related matrix norm.
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Taylor series: notations.

We define the multi–index α ∈ Nn
0 as

α := (α1, . . . , αn) ∈ Nn
0

Let
|α| := α1 + · · ·+ αn α! := α1! · · · · · αn!

Let f : D → R be |α| times continuous differentiable. Then we set

Dαf = Dα1
1 Dα2

2 . . .Dαn
n f =

∂|α|f

∂xα1
1 . . . ∂xαn

n
,

where Dαi
i = Di . . .Di︸ ︷︷ ︸

αi–mal

. We write

xα := xα1
1 xα2

2 . . . xαn
n for x = (x1, . . . , xn) ∈ Rn.
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The Taylor theorem.

Theorem: (Taylor)
Let D ⊂ Rn be open and convex. Let f : D → R be a Cm+1–function and
x0 ∈ D. Then the Taylor–expansion holds true in x ∈ D

f (x) = Tm(x; x0) + Rm(x; x0)

Tm(x; x0) =
∑
|α|≤m

Dαf (x0)

α!
(x− x0)α

Rm(x; x0) =
∑

|α|=m+1

Dαf (x0 + θ(x− x0))

α!
(x− x0)α

for an appropriate θ ∈ (0, 1).

Notation: In the Taylor–expansion we denote Tm(x; x0) Taylor–polynom of
degree m and Rm(x; x0) Lagrange–remainder.
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Derivation of the Taylor expansion.

We define a scalar function in one single variable t ∈ [0, 1] as

g(t) := f (x0 + t(x− x0))

and calculate the (univariate) Taylor–expansion at t = 0. It is

g(1) = g(0) + g ′(0) · (1− 0) +
1

2
g ′′(ξ) · (1− 0)2 for a ξ ∈ (0, 1).

The calculation of g ′(0) is given by the chain rule

g ′(0) =
d

dt
f (x0

1 + t(x1 − x0
1 ), x0

2 + t(x2 − x0
2 ), . . . , x0

n + t(xn − x0
n ))
∣∣∣
t=0

= D1f (x0) · (x1 − x0
1 ) + . . .+ Dnf (x0) · (xn − x0

n )

=
∑
|α|=1

Dαf (x0)

α!
· (x− x0)α
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Continuation of the derivation.

Calculation of g ′′(0) gives

g ′′(0) =
d2

dt2
f (x0 + t(x− x0))

∣∣∣
t=0

=
d

dt

n∑
k=1

Dk f (x0 + t(x− x0))(xk − x0
k )
∣∣∣
t=0

= D11f (x0)(x1 − x0
1 )2 + D21f (x0)(x1 − x0

1 )(x2 − x0
2 )

+ . . .+ Dij f (x0)(xi − x0
i )(xj − x0

j ) + . . .+

+Dn−1,nf (x0)(xn−1 − x0
n−1)(xn − x0

n ) + Dnnf (x0)(xn − x0
n )2)

=
∑
|α|=2

Dαf (x0)

α!
(x− x0)α (exchange theorem of Schwarz!)

Continuation: Proof of the Taylor–formula by (mathematical) induction!
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Proof of the Taylor theorem.

The function
g(t) := f (x0 + t(x− x0))

is (m + 1)–times continuous differentiable and we have

g(1) =
m∑

k=0

g (k)(0)

k!
+

g (m+1)(θ)

(m + 1)!
for a θ ∈ [0, 1].

In addition we have (by induction over k)

g (k)(0)

k!
=
∑
|α|=k

Dαf (x0)

α!
(x− x0)α

and
g (m+1)(θ)

(m + 1)!
=

∑
|α|=m+1

Dαf (x0 + θ(x− x0))

α!
(x− x0)α
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Examples for the Taylor–expansion.

1 Calculate the Taylor–polynom T2(x; x0) of degree 2 of the function

f (x , y , z) = x y2 sin z

at (x , y , z) = (1, 2, 0)T .

2 The calculation of T2(x; x0) requires the partial derivatives up to
order 2.

3 These derivatives have to be evaluated at (x , y , z) = (1, 2, 0)T .

4 The result is T2(x; x0) in the form

T2(x; x0) = 4z(x + y − 2)

5 Details on extra slide.
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Remarks to the remainder of a Taylor–expansion.

Remark: The remainder of a Taylor–expansion contains all partial
derivatives of order (m + 1):

Rm(x; x0) =
∑

|α|=m+1

Dαf (x0 + θ(x− x0))

α!
(x− x0)α

If all these derivative are bounded by aconstant C in a neighborhood of x0 then
the estimate for the remainder hold true

|Rm(x; x0)| ≤ nm+1

(m + 1)!
C ‖x− x0‖m+1

∞

We conlude for the quality of the approximation of a Cm+1–function by the
Taylor–polynom

f (x) = Tm(x; x0) + O
(
‖x− x0‖m+1

)
Special case m = 1: For a C2–function f (x) we obtain

f (x) = f (x0) + grad f (x0) · (x− x0) + O(‖x− x0‖2).
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The Hesse–matrix.

The matrix

Hf (x0) :=


fx1x1(x0) . . . fx1xn(x0)

...
...

fxnx1(x0) . . . fxnxn(x0)


is called Hesse–matrix of f at x0.

Hesse–matrix = Jacobi–matrix of the gradient ∇f

The Taylor–expansion of a C3–function can be written as

f (x) = f (x0) + grad f (x0)(x− x0) +
1

2
(x− x0)THf (x0)(x− x0) + O(‖x− x0‖3)

The Hesse–matrix of a C2–function is symmetric.
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Chapter 2. Applications of multivariate differential calculus

2.1 Extrem values of multivariate functions

Definition: Let D ⊂ Rn, f : D → R and x0 ∈ D. Then at x0 the function
f has

a global maximum if f (x) ≤ f (x0) for all x ∈ D.

a strict global maximum if f (x) < f (x0) for all x ∈ D.

a local maximum if there exists an ε > 0 such that

f (x) ≤ f (x0) for all x ∈ D with ‖x− x0‖ < ε.

a strict local maximum if there exists an ε > 0 such that

f (x) < f (x0) for all x ∈ D with ‖x− x0‖ < ε.

Analogously we define the different forms of minima.
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Necessary conditions for local extrem values.

Theorem: If a C1–function f (x) has a local extrem value (minimum or
maximum) at x0 ∈ D0, then

grad f (x0) = 0 ∈ Rn

Proof: For an arbitrary v ∈ Rn, v 6= 0 the function

ϕ(t) := f (x0 + tv)

is differentiable in a neighborhood of t0 = 0.

ϕ(t) has a local extrem value at t0 = 0. We conclude:

ϕ′(0) = grad f (x0) v = 0

Since this holds true for all v 6= 0 we obtain

grad f (x0) = (0, . . . , 0)T
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Remarks to local extrem values.

Bemerkungen:

Typically the condition grad f (x0) = 0 gives a non-linear system of n
equations for n unknwons for the calculation of x = x0.

The points x0 ∈ D0 with grad f (x0) = 0 are called stationary points of f .
Stationary points are not necessarily local extram values. As an example take

f (x , y) := x2 − y2

with the gradient
grad f (x , y) = 2(x ,−y)

and therefore with the only stationary point x0 = (0, 0)T . However, the
point x0 is a saddel point of f , i.e. in every neighborhood of x0 there exist
two points x1 and x2 with

f (x1) < f (x0) < f (x2).
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Classification of stationary points.

Theorem: Let f (x) be a C2–function on D0 and let x0 ∈ D0 be a
stationary point of f (x), i.e. grad f (x0) = 0.

a) necessary condition

If x0 is a local extrem value of f , then:

x0 local minimum ⇒ H f (x0) positiv semidefinit
x0 local maximum ⇒ H f (x0) negativ semidefinit

b) sufficient condition

If H f (x0) is positiv definit (negativ definit) then x0 is a strict local
minimum (maximum) of f .

If H f (x0) is indefinit then x0 is a saddel point, i.e. in every
neighborhood of x0 there exist points x1 and x2 with
f (x1) < f (x0) < f (x2).
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Proof of the theorem, part a).

Let x0 be a local minimum. For v 6= 0 and ε > 0 sufficiently small we conclude
from the Taylor–expansion

f (x0 + εv)− f (x0) =
1

2
(εv)TH f (x0 + θεv)(εv) ≥ 0 (1)

with θ = θ(ε, v) ∈ (0, 1).

The gradient in the Taylor expansion grad f (x0) = 0 vanishes since x0 is
stationary.

From (1) it follows
vTH f (x0 + θεv)v ≥ 0 (2)

Since f is a C2–function, the Hesse–matrix is a continuous map. In the limit
ε→ 0 we conclude from (2),

vTH f (x0)v ≥ 0

i.e. H f (x0) is positiv semidefinit.

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 60 / 182



Proof of the theorem, part b).

If H f (x0) is positiv definit, then H f (x) is positiv definit in a sufficiently small
neighborhood x ∈ Kε(x0) ⊂ D around x0. This follows from the continuity of the
second partial derivatives.

For x ∈ Kε(x0), x 6= x0 we have

f (x)− f (x0) =
1

2
(x− x0)TH f (x0 + θ(x− x0))(x− x0)

> 0

with θ ∈ (0, 1), i.e. f has a strict local minimum at x0.

If H f (x0) is indefinit, then there exist Eigenvectors v,w for Eigenvalues of H f (x0)
with opposite sign with

vTHf (x0)v > 0 wTHf (x0)w < 0

and thus x0 is a saddel point.

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 61 / 182



Remarks.

A stationary point x0 with det Hf (x0) = 0 is called degenerate. The
Hesse–matrix has an Eigenvalue λ = 0.

If x0 is not degenerate, then there exist 3 cases for the Eigenvalues of
Hf (x0):

all Eigenvalues are strictly positive ⇒ x0 is a strict local minimum

all Eigenvalues are strictly negative ⇒ x0 is a strict local maximum

there are strictly positive and negative Eigenvalues ⇒ x0 saddel point

The following implications are true (but not the inverse)

x0 local minimum ⇐ x0 strict local minimum

⇓ ⇑

Hf (x0) positiv semidefinit ⇐ Hf (x0) positiv definit
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Further remarks.

If f is a C3–function, x0 a stationary point of f and Hf (x0) positiv definit.
Then the following estimate is true:

(x− x0)T Hf (x0) (x− x0) ≥ λmin · ‖x− x0‖2

where λmin denoted the smallest Eigenvalue ot the Hesse–matrix.

Using the Taylor theorem we obtain:

f (x)− f (x0) ≥ 1

2
λmin‖x− x0‖2 + R3(x; x0)

≥ ‖x− x0‖2

(
λmin

2
− C‖x− x0‖

)
with an appropriate constant C > 0.

The function f grows at least quadratically around x0.
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Example .

We consider the function

f (x , y) := y2(x − 1) + x2(x + 1)

and look for stationary points :

grad f (x , y) = (y2 + x(3x + 2), 2y(x − 1))T

The condition grad f (x , y) = 0 gives two stationary points

x0 = (0, 0)T und x1 = (−2/3, 0)T .

The related Hesse–matrices of f at x0 and x1 are

Hf (x0) =

(
2 0
0 −2

)
and Hf (x1) =

(
−2 0

0 −10/3

)
The matrix Hf (x0) is indefinit, therefore x0 is a saddel point. Hf (x1) is negativ
definit and thus x1 is a strict local ein strenges maximum of f .
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Chapter 2. Applications of multivariate differential calculus

2.2 Implicitely defined functions

Aim: study the set of solutions of the system of non-linear equations of
the form

g(x) = 0

with g : D → Rm, D ⊂ Rn. I.e. we consider m equations for n unknowns
with

m < n.

Thus: there are less equations than unknowns.

We call such a system of equations underdetermined and the set of
solutions G ⊂ Rn contains typically infinitely many points.
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Solvability of (nonlinear) equations.

Question: can we solve the system g(x) = 0 with respect to certain unknowns,
i.e. with respect to the last m variables xn−m+1, . . . , xn?

In other words: is there a function f(x1, . . . , xn−m) with

g(x) = 0 ⇐⇒ (xn−m+1, . . . , xn)T = f(x1, ..., xn−m)

Terminology: ”solve” means express the last m variables by the first n −m
variables?

Other question: with respect to which m variables can we solve the system? Is
the solution possible globally on the domain of defintion D? Or only locally on a
subdomain D̃ ⊂ D?

Geometrical interpretation: The set of solution G of g(x) = 0 can be expressed
(at least locally) as graph of a function f : Rn−m → Rm.
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Example.

The equation for a circle

g(x , y) = x2 + y2 − r2 = 0 mit r > 0

defines an underdetermined non-linear system of equations since we have
two unknowns (x , y), but only one scalar equation.

The equation for the circle can be solved locally and defines the four
functions :

y =
√
r2 − x2, −r ≤ x ≤ r

y = −
√
r2 − x2, −r ≤ x ≤ r

x =
√

r2 − y2, −r ≤ y ≤ r

x = −
√

r2 − y2, −r ≤ y ≤ r
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Example.

Let g be an affin–linear function, i.e. g has the form

g(x) = Cx + b for C ∈ Rm×n, b ∈ Rm

We split the variables x into two vectors

x(1) = (x1, . . . , xn−m)T ∈ Rn−m and x(2) = (xn−m+1, . . . , xn)T ∈ Rm

Splitting of the matrix C = [B,A] gives the form

g(x) = Bx(1) + Ax(2) + b

with B ∈ Rm×(n−m), A ∈ Rm×m.

The system of equations g(x) = 0 can be solved (uniquely) with respect to
the variables x(2), if A is regular. Then

g(x) = 0 ⇐⇒ x(2) = −A−1(Bx(1) + b) = f(x(1))
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Continuation of the example.

Question: How can we write the matrix A as dependent of g?

From the equation
g(x) = Bx(1) + Ax(2) + b

we see that

A =
∂g

∂x(2)
(x(1), x(2))

holds, i.e. A is the Jacobian of the map

x(2) → g(x(1), x(2))

for fixed x(1)!

We conclude: Solvability is given if the Jacobian is regular (invertible).
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Implicit function theorem.

Theorem: Let g : D → Rm be a C1–function, D ⊂ Rn open. We denote the
variables in D by (x, y) with x ∈ Rn−m und y ∈ Rm. Let Der (x0, y0) ∈ D be a
solution of g(x0, y0) = 0.

If the Jacobi–matrix

∂g

∂y
(x0, y0) :=


∂g1

∂y1
(x0, y0) . . . ∂g1

∂ym
(x0, y0)

...
...

∂gm
∂y1

(x0, y0) . . . ∂gm
∂ym

(x0, y0)


is regular, then there exist neighborhoods U of x0 and V of y0, U × V ⊂ D and a
uniquely determined continuous differentiable function f : U → V with

f(x0) = y0 und g(x, f(x)) = 0 für alle x ∈ U

and

J f(x) = −
(
∂g

∂y
(x, f(x))

)−1 (
∂g

∂x
(x, f(x))

)
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Example.

For the equation of a circle g(x , y) = x2 + y2 − r2 = 0, r > 0 we have at
(x0, y0) = (0, r)

∂g

∂x
(0, r) = 0,

∂g

∂y
(0, r) = 2r 6= 0

Thus we can solve the equation of a circle in a neighborhod of (0, r) with
respect to y :

f (x) =
√

r2 − x2

The derivative f ′(x) can be calculated by implicit diffentiation:

g(x , y(x)) = 0 =⇒ gx(x , y(x)) + gy (x , y(x))y ′(x) = 0

and therefore

2x + 2y(x)y ′(x) = 0 ⇒ y ′(x) = f ′(x) = − x

y(x)
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Another example.

Consider the equation g(x , y) = ey−x + 3y + x2 − 1 = 0.

It is
∂g

∂y
(x , y) = ey−x + 3 > 0 for all x ∈ R.

Therefore the equation con be solved fpr every x ∈ R with respect to y =: f (x)
and f (x) is a continuous differentiable function. Implicit differentiation ives

ey−x(y ′ − 1) + 3y ′ + 2x = 0 =⇒ y ′ =
ey−x − 2x

ey−x + 3

Differentiating again gives

ey−xy ′′ + ey−x(y ′ − 1)2 + 3y ′′ + 2 = 0 =⇒ y ′ = −2 + ey−x(y ′ − 1)2

ey−x + 3

But: Solving the equation with respect to y (in terms of elementary functions) is
not possible in this case!
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general remark.

Implicit differentiation of a implicitely defined function

g(x , y) = 0,
∂g

∂y
6= 0

y = f (x), with x , y ∈ R, gives

f ′(x) = −gx
gy

f ′′(x) = −
gxxg

2
y − 2gxygxgy + gyyg

2
x

g3
y

Therefore the opint x0 is a stationary point of f (x) if

g(x0, y0) = gx(x0, y0) = 0 and gy (x0, y0) 6= 0

And x0 is a local maximum (minimum) if

gxx(x0, y0)

gy (x0, y0)
> 0

(
bzw.

gxx(x0, y0)

gy (x0, y0)
< 0

)
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Implicit representation of curves.

Consider the set of solutions of a scalar equation

g(x , y) = 0

If
grad g = (gx , gy ) 6= 0

then g(x , y) defines locally a function y = f (x) or x = f̄ (y).

Definition: A solution point (x0, y0) of the equation g(x , y) = 0 with

grad g(x0, y0) 6= 0 is called regular point,

grad g(x0, y0) = 0 is called singular point.

Example: Consider (again) the equation for a circle

g(x , y) = x2 + y2 − r = 0 mit r > 0.

on the circle there are no singular points!
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Horizontal and vertical tangents.

Remarks:

a) If for a regular point (x0, y0) we have

gx(x0) = 0 und gy (x0) 6= 0

then the set of solutions contains a horizontal tangent in x0.

b) If for a regular point (x0, y0) we have

gx(x0) 6= 0 und gy (x0) = 0

then the set of solutions contains a vertical tangent in x0.

c) If x0 is a singular point, then the set of solutions is approximated at x0 “in
second order” by the following quadratic equation

gxx(x0)(x − x0)2 + 2gxy (x0)(x − x0)(y − y0) + gyy (x0)(y − y0)2 = 0
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Remarks.

Due to c) for gxx , gxy , gyy 6= 0 we obtain:

det Hg(x0) > 0 : x0 is an isolated point of the set of solutions

det Hg(x0) < 0 : x0 is a double point

det Hg(x0) = 0 : x0 is a return point or a cusp

Geometric interpretation:

a) If det Hg(x0) > 0, then both Eigenvalues of Hg(x0) are or strictly positiv or
strictly negativ, i.e. x0 is a strict local minimum or maximum of g(x).

b) If det Hg(x0) < 0, then both Eigenvalues of Hg(x0) have opposite sign, i.e.
x0 is a saddel point of g(x).

c) If det Hg(x0) = 0, then the stationary point x0 of g(x) is degenerate.
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Example 1.

Consider the singular point x0 = 0 of the implicit equation

g(x , y) = y2(x − 1) + x2(x − 2) = 0

Calculate the partial derivatives up to order 2:

gx = y2 + 3x2 − 4x

gy = 2y(x − 1)

gxx = 6x − 4

gxy = 2y

gyy = 2(x − 1)

Hg(0) =

(
−4 0

0 −2

)
Therefore x0 = 0 is an isolated point.
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Example 2.

Consider the singular point x0 = 0 of the implicit equation

g(x , y) = y2(x − 1) + x2(x + q2) = 0

Calculate the partial derivatives up to order 2:

gx = y2 + 3x2 + 2xq2

gy = 2y(x − 1)

gxx = 6x + 2q2

gxy = 2y

gyy = 2(x − 1)

Hg(0) =

(
2q2 0

0 −2

)
Therefore x0 = 0 is an double point.
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Example 3.

Consider the singular point x0 = 0 of the implicit equation

g(x , y) = y2(x − 1) + x3 = 0

Calculate the partial derivatives up to order 2:

gx = y2 + 3x2

gy = 2y(x − 1)

gxx = 6x

gxy = 2y

gyy = 2(x − 1)

Hg(0) =

(
0 0
0 −2

)
Therefore x0 = 0 is a cusp (or a return point).
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Implicit representation of surfaces.

The set of solutions of a scalar equation g(x , y , z) = 0 for grad g 6= 0 is
locally a surface in R3.

For the tangential in x0 = (x0, y0, z0)T with g(x0) = 0 and grad g(x0) 6= 0T

we obtain by Taylor expanding (denoting ∆x0 = x− x0)

grad g ·∆x0 = gx(x0)(x − x0) + gy (x0)(y − y0) + gz(x0)(z − z0) = 0

i.e. the gradient is vertical to the surface g(x , y , z) = 0.

If for example gz(x0) 6= 0, then locally there exists a a representation at x0

of the form
z = f (x , y)

and for the partial derivatives of f (x , y) we obtain

grad f (x , y) = (fx , fy ) = − 1

gz
(gx , gy ) =

(
−gx
gz
,
gy
gz

)
using the implicit function theorem.
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The inverted Problem.

Question: Given the set of equations

y = f(x)

with f : D → Rn, D ⊂ Rn open. Can we solve it with respect to x, i.e. can
we invert the probem?

Theorem: (Inversion theorem)

Let D ⊂ Rn be open and f : D → Rn a C1–function. If the Jacobian–matrix
J f(x0) is regular for an x0 ∈ D, then there exist neighborhoods U and V
of x0 and y0 = f(x0) such that f maps U on V bijectively.

The inverse function f−1 : V → U is also C1 and for all x ∈ U we have:

J f−1(y) = (J f(x))−1, y = f(x)

Remark: We call f locally a C1–diffeomorphism.
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Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the
material amount by given volume?

Ansatz for solution: Let r > 0 be the radius and h > 0 the height of the can.
Then

V = πr2h

O = 2πr2 + 2πrh

Let c ∈ R+ be the given volume (with x := r , y := h),

f (x , y) = 2πx2 + 2πxy

g(x , y) = πx2y − c = 0

Determine the minimum of the function f (x , y) on the set

G := {(x , y) ∈ R2
+ | g(x , y) = 0}
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Solution of the constraint minimisation problem.

From g(x , y) = πx2y − c = 0 follows

y =
c

πx2

We plug this into f (x , y) and obtain

h(x) := 2πx2 + 2πx
c

πx2
= 2πx2 +

2c

x

Determine the minimum of the function h(x):

h′(x) = 4πx − 2c

x2
= 0 ⇒ 4πx =

2c

x2
⇒ x =

( c

2π

)1/3

Sufficient condition

h′′(x) = 4π +
4c

x3
⇒ h′′

(( c
π

)1/3
)

= 12π > 0
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General formulation of the problem.

Determine the extrem values of the function f : Rn → R under the
constraint

g(x) = 0

where g : Rn → Rm.

The constraints are

g1(x1, . . . , xn) = 0

...

gm(x1, . . . , xn) = 0

Alternatively: Determine the extrem values of the function f (x) on the
set

G := {x ∈ Rn | g(x) = 0}

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 84 / 182



The Lagrange–function and the Lagrange–Lemma.

We define the Lagrange–function

F (x) := f (x) +
m∑
i=1

λigi (x)

and look for the extrem values of F (x) for fixed λ = (λ1, . . . , λm)T .

The numbers λi , i = 1, . . . ,m are called Lagrange–multiplier.

Theorem: (Lagrange–Lemma) If x0 minimizes (or maximizes) the
Lagrange–function F (x) (for a fixed λ) on D and if g(x0) = 0 holds, then x0 is
the minimum (or maximum) of f (x) on G := {x ∈ D | g(x) = 0}.

Proof: For an arbitrary x ∈ D we have

f (x0) + λTg(x0) ≤ f (x) + λTg(x)

If we choose x ∈ G , then g(x) = g(x0) = 0, thus f (x0) ≤ f (x).
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A necessary condition for local extrema.

Let f and gi , i = 1, . . . ,m, C1–functions, then a necessary condition for an
extrem value x0 of F (x) is given by

gradF (x) = grad f (x) +
m∑
i=1

λigrad gi (x) = 0

Together with the constraints g(x) = 0 we obtain a set of (non-linear) equations
with (n + m) equations and (n + m) unknowns x and λ.

The solutions (x0, λ0) are the candidates for the extrem values, since these
solutions satisfy the above necessary condition.

Alternatively: Define a Langrange–function

G (x, λ) := f (x) +
m∑
i=1

λigi (x)

and look for the extrem values of G (x, λ) with respect to x and λ.
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Some remarks on sufficient conditions.

1 We can formulate a sufficient condition:
If the functions f and g are C2–functions and if the Hesse–matrix
HF (x0) of the Lagrange–function is positiv (negativ) definit, then x0

is a strict local minimum (maximum) of f (x) on G .

2 In most of the applications the sufficient condition are not satisfied,
allthough x0 is a strict local extremum.

3 And from the indefiniteness of the Hesse–matrix HF (x0) we cannot
conclude, that x0 is not an extremum.

4 We have a similar problem with the necessary condition which is
obtained from the Hesse–matrix of the Lagrange–function G (x, λ)
with respect to x and λ.
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An example of a minimisation problem with constraints.

We look for extrem values of f (x , y) := xy on the disc

K := {(x , y)T | x2 + y2 ≤ 1}

Since the function f is continuous and K ⊂ R2 compact we conclude from
the min–max–property the existence of global maxima and minima on K .

We consider first the interior K 0 of K , i.e. the open set

K 0 := {(x , y)T | x2 + y2 < 1}

The necessary condition for an extrem value is given by

grad f = (y , x) = 0

Thus the origin x0 = 0 is a candidate for a (local) extrem value.
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continuation of the example.

The Hesse–matrix at the origin is given by

Hf (0) =

(
0 1
1 0

)
and is indefinit. Thus x0 is a saddel point.

Therefore the extrem values have to be on the boundary which is
represented by a constraint equation:

g(x , y) = x2 + y2 − 1 = 0

Therefore we look for the extrem values of f (x , y) = xy under the
constraint g(x , y) = 0.

The Lagrange–function is given by

F (x , y) = xy + λ(x2 + y2 − 1)
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Completion of the example.

We obtain the non-linear system of equations

y + 2λx = 0

x + 2λy = 0

x2 + y2 = 1

with the four solution

λ =
1

2
: x(1) = (

√
1/2,−

√
1/2)T x(2) = (−

√
1/2,

√
1/2)T

λ = −1

2
: x(3) = (

√
1/2,

√
1/2)T x(4) = (−

√
1/2,−

√
1/2)T

Minima and Maxima can be concluded from the values of the function

f (x(1)) = f (x(2)) = −1/2 f (x(3)) = f (x(4)) = 1/2

i.e. minima are x(1) and x(2), maxima are x(3) and x(4).
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Lagrange–multiplier–rule.

Satz: Let f , g1, . . . , gm : D → R be C1–functions, und let x0 ∈ D a local
extrem value of f (x) under the constraint g(x) = 0. In addition let the
regularity condition

rang
(

J g(x0)
)

= m

hold true. Then there exist Lagrange–multiplier λ1, . . . , λm, such that for
the Lagrange function

F (x) := f (x) +
m∑
i=1

λigi (x)

the following first order necessary condition holds true:

gradF (x0) = 0
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Necessary condition of second order and sufficient
condition.

Theorem: 1) Let x0 ∈ D a local minimum of f (x) under the constraint g(x) = 0,
let the regularity condition be satisfied and let λ1, . . . , λm be the related
Lagrange–multiplier. Then the Hesse–matrix HF (x0) of the Lagrange–function is
positiv semi-definit on the tangential space

TG (x0) := {y ∈ Rn | grad gi (x0) · y = 0 for i = 1, . . . ,m}

i.e. it is yT HF (x0) y ≥ 0 for all y ∈ TG (x0).

2) Let the regularity condition for a point x0 ∈ G be staisfied. If there exist
Lagrange–multiplier λ1, . . . , λm, such that x0 is a stationary point of the related
Lagrange–function. Let the Hesse–matrix HF (x0) be positiv definit on the
tangential space TG (x0), i.e. it holds

yT HF (x0) y > 0 ∀ y ∈ TG (x0) \ {0},

then x0 is a strict local minimum of f (x) under the constraint g(x) = 0.
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Example.

Determine the global maximum of the function

f (x , y) = −x2 + 8x − y2 + 9

under the constraint

g(x , y) = x2 + y2 − 1 = 0

The Lagrange–function is given by

F (x) = −x2 + 8x − y2 + 9 + λ(x2 + y2 − 1)

From the necessary condition we obtain the non-linear system

−2x + 8 = −2λx

−2y = −2λy

x2 + y2 = 1
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Continuation of the example.

From the necessary condition we obtain the non-linear system

−2x + 8 = −2λx

−2y = −2λy

x2 + y2 = 1

The first equation gives λ 6= 1. Using this in the second equation we get y = 0.
From the third equation we obtain x = ±1.

Therefore the two points (x , y) = (1, 0) and (x , y) = (−1, 0) are candidates for a
global maximum. Since

f (1, 0) = 16 f (−1, 0) = 0

the global maximum of f (x , y) under the constraint g(x , y) = 0 is given at the
point (x , y) = (1, 0).
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Another example.

Determine the local extrem values of

f (x , y , z) = 2x + 3y + 2z

on the intersection of the cylinder surface

MZ := {(x , y , z)T ∈ R3 | x2 + y2 = 2}

with the plane
E := {(x , y , z)T ∈ R3 | x + z = 1}

Reformulation: Determine the extrem values of the function f (x , y , z)
under the constraint

g1(x , y , z) := x2 + y2 − 2 = 0

g2(x , y , z) := x + z − 1 = 0
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Continuation of the example.

The Jacobi–matrix

Jg(x) =

(
2x 2y 0
1 0 1

)
has rank 2, i.e. we can determine extrem values using the Lagrange–function:

F (x , y , z) = 2x + 3y + 2z + λ1(x2 + y2 − 2) + λ2(x + z − 1)

The necessary condition gives the non-linear system

2 + 2λ1x + λ2 = 0

3 + 2λ1y = 0

2 + λ2 = 0

x2 + y2 = 2

x + z = 1
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Continuation of the example.

The necessary condition gives the non-linear system

2 + 2λ1x + λ2 = 0

3 + 2λ1y = 0

2 + λ2 = 0

x2 + y2 = 2

x + z = 1

From the first and the third equation it follows

2λ1x = 0

From the second equation it follows λ1 6= 0, i.e. x = 0.
Thus we have possible extrem values

(x , y , z) = (0,
√

2, 1) (x , y , z) = (0,−
√

2, 1)
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Completion if the example.

The possible extrem values are

(x , y , z) = (0,
√

2, 1) (x , y , z) = (0,−
√

2, 1)

and lie on the cylinder surface MZ of the cylinder Z with

Z = {(x , y , z)T ∈ R3 | x2 + y2 ≤ 2}

MZ = {(x , y , z)T ∈ R3 | x2 + y2 = 2}

We calculate the related functiuon values

f (0,
√

2, 1) = 3
√

2 + 2

f (0,−
√

2, 1) = −3
√

2 + 2

Thus the point (x , y , z) = (0,
√

2, 1) is a maximum an the point
(x , y , z) = (0,−

√
2, 1) a minimum.
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Chapter 2. Applications of multivariate differential calculus

2.4 the Newton–method

Aim: We look for the zero’s of a function f : D → Rn, D ⊂ Rn:

f(x) = 0

We already know the fixed-point iteration

xk+1 := Φ(xk)

with starting point x0 and iteration map Φ : Rn → Rn.

Convergence results are given by the Banach Fixed Point Theorem.

Advantage: this method is derivative-free.

Disadvantages:

the numerical scheme converges to slow (only linear),

there is no unique iteratin map.
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The construction of the Newton method.

Starting point: Let C1–function f : D → Rn, D ⊂ Rn open.

We look for a zero of f, i.e. a x∗ ∈ D with

f(x∗) = 0

Construction of the Newton–method:

The Taylor–expansion of f(x) at x0 is given by

f(x) = f(x0) + Jf(x0)(x− x0) + o(‖x− x0‖)

Setting x = x∗ we obtain

Jf(x0)(x∗ − x0) ≈ −f(x0)

An approximative solution for x∗ is given by x1, x1 ≈ x∗, the solution of the linear
system of equations

Jf(x0)(x1 − x0) = −f(x0)
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The Newton–method as algorithm.

The Newton–method can be formulated as algorithm.

Algorithm (Newton–method):

(1) FOR k = 0, 1, 2, . . .

(2a) Solve Jf(xk) ·∆xk = −f (xk);

(2b) Set xk+1 = xk + ∆xk ;

In every Newton–step we solve a set of linear equations.

The solution ∆xk is called Newton–correction.

The Newton–method is scaling-invariant.
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Scaling-invariance of the Newton–method.

Theorem: the Newton–method is invariant under linear transformations of the
form

f(x)→ g(x) = Af(x) for A ∈ Rn×n regular,

i.e. the iterates for f and g are identical.

Proof: Constructing the Newton–method for g(x), then the Newton–correction is
given by

∆xk = −(Jg(xk))−1 · g(xk)

= −(AJf(xk))−1 · Af(xk)

= −(Jf(xk))−1 · A−1A · f(xk)

= −(Jf(xk))−1 · f(xk)

and thus the Newton–correction of f and g conincide.

Using the same starting point x0 we obtain the same iterates xk .
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Local convergence of the Newton–method.

Theorem: Let f : D → Rn be a C1–function, D ⊂ Rn open and convex. Let
x∗ ∈ D a zero of f, i.e. f(x∗) = 0.

Let the Jacobi–matrix Jf(x) be regular for x ∈ D, and suppose the
Lipschitz–condition

‖(Jf(x)−1(Jf(y)− Jf(x))‖ ≤ L‖y − x‖ for all x, y ∈ D,

holds true with L > 0. Then the Newton–method is well defined for all starting
points x0 ∈ D with

‖x0 − x∗‖ < 2

L
=: r and Kr (x∗) ⊂ D

with xk ∈ Kr (x∗), k = 0, 1, 2, . . . , and the Newton–iterates xk converge
quadratically to x∗, i.e.

‖xk+1 − x∗‖ ≤ L

2
‖xk − x∗‖2

x∗ is the unique zero of f(x) within the ball Kr (x∗).
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The damped Newton–method.

Additional obserrvations:

The Newton–method converges quadratically, but only locally.

Global convergence can be obtained - if applicable - by a damping term:

Algorithm (Damped Newton–method):

(1) FOR k = 0, 1, 2, . . .

(2a) Solve Jf(xk) ·∆xk = −f (xk);

(2b) Set xk+1 = xk + λk∆xk ;

Frage: How should we choose the damping parameters λk?
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Choice of the damping paramter.

Strategy: Use a testfunction T (x) = ‖f(x)‖ such that

T (x) ≥ 0, ∀ x ∈ D

T (x) = 0 ⇔ f (x) = 0

Choose λk ∈ (0, 1) such that the sequence T (xk) decreases strictly monotonically,
i.e.

‖f(xk+1)‖ < ‖f(xk)‖ für k ≥ 0.

Close to the solution x∗ we should choose λk = 1 to guarantee (local) quadratic
convergence.

The following Theorem guarantees the existence of damping parameters.

Theorem: Let f a C1–function on the open and convex set D ⊂ Rn. For xk ∈ D
with f(xk) 6= 0 there exists a µk > 0 such that

‖f(xk + λ∆xk)‖2
2 < ‖f(xk)‖2

2 for all λ ∈ (0, µk).
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Damping strategy.

For the initial iteration k = 0: Choose λ0 ∈ {1, 1
2 ,

1
4 , . . . , λmin} as big as possible

such that
‖f(x0)‖2 > ‖f(x0 + λ0∆x0)‖2

holds. For subsequent iterations k > 0: Set λk = λk−1.

IF ‖f(xk)‖2 > ‖f(xk + λk∆xk)‖2 THEN

• xk+1 := xk + λk∆xk

• λk := 2λk , falls λk < 1.

ELSE

• Determine µ = max{λk/2, λk/4, . . . , λmin} with

‖f(xk)‖2 > ‖f(xk + λk∆xk)‖2

• λk := µ

END
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Chapter 3. Integration in higher dimensions

3.1 Area integrals

Given a function f : D → R with domain of definition D ⊂ Rn.

Aim: Calculate the volume under the graph of f (x):

V =

∫
D
f (x)dx

Remember (Analysis II): Riemann–Integral of a function f on the
interval [a, b]:

I =

∫ b

a
f (x)dx

The integral I is defined as limit of Riemann upper– and lower-sums, if the
limits exist and coincide.
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Construction of area integrals.

Procedure: Same as in the one dimensional case.

But: the domain of definition D is more complex.

Starting point: consider the case of two variables n = 2 and a domain of
definition D ⊂ R2 of the form

D = [a1, b1]× [a2, b2] ⊂ R2

i.e. D is compact cuboid (rectangle).

Let f : D → R be a bounded function.

Definition: We call Z = {(x0, x1, . . . , xn), (y0, y1, . . . , ym)} a partition of the
cuboid D = [a1, b1]× [a2, b2] if it holds

a1 = x0 < x1 < · · · < xn = b1

a2 = y0 < y1 < · · · < ym = b2

Z(D) denotes the set of partitions of D.
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Partitions and Riemann sums.

Definition:

The fineness of a partition Z ∈ Z(D) is given by

‖Z‖ := max
i,j
{|xi+1 − xi |, |yj+1 − yj |}

For a given partition Z the sets

Qij := [xi , xi+1]× [yj , yj+1]

are called the subcuboid of the partition Z . The volume of the subcuboid Qij

is given by
vol(Qij) := (xi+1 − xi ) · (yj+1 − yj)

For arbitrary points xij ∈ Qij of the subcuboids we call

Rf (Z ) :=
∑
i,j

f (xij) · vol(Qij)

a Riemann sum of the partition Z .
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Riemann upper and lower sums.

Definition:

In analogy to the integral for the univariate case we call for a partition Z

Uf (Z ) :=
∑
i ,j

inf
x∈Qij

f (x) · vol(Qij)

Of (Z ) :=
∑
i ,j

sup
x∈Qij

f (x) · vol(Qij)

the Riemann lower sum and the Riemann upper sum of f (x), respectively.

Remark:

A Riemann sum for the partition Z lies always between the lower and the
upper sum of that partition i.e.

Uf (Z ) ≤ Rf (Z ) ≤ Of (Z )
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Remark.

If a partition Z2 is obtained from a partition Z1 by adding additional intermediate
points xi and/or yj , then

Uf (Z2) ≥ Uf (Z1) and Of (Z2) ≤ Of (Z1)

For arbitrary two partitions Z1 and Z2 we always have:

Uf (Z1) ≤ Of (Z2)

Question: what happens to the lower and upper sums in the limit ‖Z‖ → 0:

Uf := sup{Uf (Z ) : Z ∈ Z(D)}

Of := inf{Of (Z ) : Z ∈ Z(D)}

Observation: Both values Uf and Of exist since lower and upper sum are
monoton and bounded.
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Riemann upper and lower integrals.

Definition:

1 The Riemann lower and upper integral of a function f (x) on D is given by∫
D

f (x)dx := sup{Uf (Z ) : Z ∈ Z(D)}

∫
D

f (x)dx := inf{Of (Z ) : Z ∈ Z(D)}

2 The function f (x) is called Riemann–integrable on D, if lower and upper
integral conincide. The Riemann–integral of f (x) on D is then given by∫

D

f (x)dx :=

∫
D

f (x)dx =

∫
D

f (x)dx
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Remark.

Up to now we habe ”only” considered the case of two variables:

f : D → R, D ∈ R2

In higher dimensions, n > 2, the procedure is the same.

Notation: for n = 2 and n = 3∫
D
f (x , y)dxdy bzw.

∫
D
f (x , y , z)dxdydz

or ∫∫
D
f (x , y)dxdy bzw.

∫∫∫
D
f (x , y , z)dxdydz

respectively.
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Elementary properties of the integral.

Theorem:

a) Linearity∫
D

(αf (x) + βg(x))dx = α

∫
D
f (x)dx + β

∫
D
g(x)dx

b) Monotonicity

If f (x) ≤ g(x) for all x ∈ D, then:∫
D
f (x)dx ≤

∫
D
g(x)dx

c) Positivity

If for all x ∈ D the relation f (x) ≥ 0 holds, i.e. f (x) is non–negative,
then ∫

D
f (x)dx ≥ 0
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Additional properties of the integral.

Theorem:

a) Let D1, D2 and D be cuboids, D = D1 ∪ D2 and vol(D1 ∩ D2) = 0, then
f (x) is on D integrable if and only if f (x) is integrable on D1 and D2. And
we have ∫

D

f (x)dx =

∫
D1

f (x)dx +

∫
D2

f (x)dx

b) The following estimate holds for the integral∣∣∣∣ ∫
D

f (x)dx

∣∣∣∣ ≤ sup
x∈D
|f (x)| · vol(D)

c) Riemann criterion

f (x) is integrable on D if and only if :

∀ ε > 0 ∃Z ∈ Z(D) : Of (Z )− Uf (Z ) < ε
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Fubini’s theorem.

Theorem: (Fubini’s theorem) Let f : D → R be integrable, D = [a1, b1]× [a2, b2]
be a cuboid. If the integrals

F (x) =

∫ b2

a2

f (x , y)dy and G (y) =

∫ b1

a1

f (x , y)dx

exist for all x ∈ [a1, b1] and y ∈ [a2, b2], respectively, then∫
D

f (x)dx =

∫ b1

a1

∫ b2

a2

f (x , y)dydx

∫
D

f (x)dx =

∫ b2

a2

∫ b1

a1

f (x , y)dxdy

holds true.
Importance:
Fubini’s theorem allows to reduce higher-dimensional integrals to one-dimensional
integrals.
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Example.

Given the cuboid D = [0, 1]× [0, 2] and the function

f (x , y) = 2− xy

We will show that continuous functions are integrable on cuboids. Thus we can
apply Fubini’s theorem:∫

D

f (x)dx =

∫ 2

0

∫ 1

0

f (x , y)dxdy =

∫ 2

0

[
2x − x2y

2

]x=1

x=0

dy

=

∫ 2

0

(
2− y

2

)
dy =

[
2y − y2

4

]y=2

y=0

= 3

Remark: Fubini’s theorem requires the integrability of f (x). The existence of the
two integrals F (x) and G (y) does not guarantee the integrability of f (x)!
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The characteristic function.

Definition: Let D ⊂ Rn compact and f : D → R bounded. We set

f ∗(x) :=

{
f (x) : if x ∈ D

0 : if x ∈ Rn \ D

In particular for f (x) = 1 we call f ∗(x) the characteristic function of D.
The characteristic function of D is called XD(x).

Let Q be the smallest cuboid with D ⊂ Q. The function f (x) is called
integrable on D, if f ∗(x) is integrable on Q. We set∫

D
f (x)dx :=

∫
Q
f ∗(x)dx
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Measurability and null sets.

Definition: The compact set D ⊂ Rn is called measurable, if the integral

vol(D) :=

∫
D

1dx =

∫
Q

XD(x)dx

exists. We call vol(D) the volume of D in Rn.

The compact set D is called null set, if D is measurable and if vol(D) = 0 holds.

Remark:

If D a cuboid, then Q = D and thus∫
D

f (x)dx =

∫
Q

f ∗(x)dx =

∫
Q

f (x)dx

i.e. the introduced concepts of integrability coincide.

Cuboids are measurable sets.

vol(D) is the volume of the cuboid on Rn.
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Three more properties of integration.

We have the following theorems for integrals in higher dimensions.

Theorem: Let D ⊂ Rn be compact. D is measurable if and only if the
boundary ∂D of D is a null set.

Theorem: Let D ⊂ Rn be compact and measurable. Let f : D → R be
continuous. Then f (x) is integrable on D.

Theorem: (Mean value theorem) Let D ⊂ Rn be compact, connected and
measurable, and let f : D → R be continuous, then there exist a point
ξ ∈ D with ∫

D
f (x)dx = f (ξ) · vol(D)
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”Normal” areas.

Definition:

A subset D ⊂ R2 is called ”normal” area, there exist continuous functions
g , h and g̃ , h̃ with

D = {(x , y) | a ≤ x ≤ b and g(x) ≤ y ≤ h(x)}

and
D = {(x , y) | ã ≤ y ≤ b̃ and g̃(y) ≤ x ≤ h̃(y)}

respectively.

A subset D ⊂ R3 is called ”normal” area , if there is a representation

D = { (x1, x2, x3) | a ≤ xi ≤ b, g(xi ) ≤ xj ≤ h(xi )

and ϕ(xi , xj) ≤ xk ≤ ψ(xi , xj) }

with a permutation (i , j , k) of (1, 2, 3) and continuos functions g , h, ϕ and ψ.
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Projectable sets.

Definition: A subset D ⊂ Rn is called projectable in the direction xi ,
i ∈ {1, . . . .n}, if there exist a measurable set B ⊂ Rn−1 and continuous
functions ϕ,ψ such that

D = { x ∈ Rn | x̃ = (x1, . . . , xi−1, xi+1, . . . , xn)T ∈ B

und ϕ(x̃) ≤ xi ≤ ψ(x̃) }

Remark:

Projectable sets are measurable sets. Since ”normal” areas are
projectable, ”normal” areas are measurable.

Often the area of integration D can be represented by a union of
finite many ”normal” areas. Such areas are then also measurable.
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Integration on ”normal” areas and projectable sets.

Theorem: If f (x) is a continuous function on a ”normal” area

D = { (x , y) ∈ R2 : a ≤ x ≤ b and g(x) ≤ y ≤ h(x) }

then we have ∫
D

f (x)dx =

∫ b

a

∫ h(x)

g(x)

f (x , y)dy dx

Analogous relations hold in higher dimensions: If D ⊂ Rn is a projectable set in
the direction xi , i.e. D has a representation of the form

D = { x ∈ Rn | x̃ = (x1, . . . , xi−1, xi+1, . . . , xn)T ∈ B

and ϕ(x̃) ≤ xi ≤ ψ(x̃) }

then it holds ∫
D

f (x)dx =

∫
B

( ∫ ψ(x̃)

ϕ(x̃)

f (x)dxi

)
d x̃

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 123 / 182



Example.

Given a function
f (x , y) := x + 2y

Calculate the integral on the area bounded by two parabolas

D := {(x , y) | − 1 ≤ x ≤ 1 und x2 ≤ y ≤ 2− x2}

The set D is a ”normal” area and f (x , y) is continuous. Thus∫
D

f (x , y)dx =

∫ 1

−1

(∫ 2−x2

x2

(x + 2y)dy

)
dx =

∫ 1

−1

[
xy + y2

]2−x2

x2 dx

=

∫ 1

−1

(x(2− x2) + (2− x2)2 − x3 − x4)dx

=

∫ 1

−1

(−2x3 − 4x2 + 2x + 4)dx =
16

3
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Example.

Calculate the volume of the rotational paraboloid

V := {(x , y , z)T | x2 + y2 ≤ 1 and x2 + y2 ≤ z ≤ 1}

Representation of V as ”normal” area

V = {(x , y , z)T | −1 ≤ x ≤ 1, −
√

1− x2 ≤ y ≤
√

1− x2 and x2+y2 ≤ z ≤ 1}

Then we have

vol(V ) =

∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 1

x2+y2

dzdydx =

∫ 1

−1

∫ √1−x2

−
√

1−x2

(1− x2 − y2)dydx

=

∫ 1

−1

[
(1− x2)y − y3

3

]y=
√

1−x2

y=−
√

1−x2

dx =
4

3

∫ 1

−1

(1− x2)3/2dx

=
1

3

[
x(
√

1− x2)3 +
3

2
x
√

1− x2 +
3

2
arcsin(x)

]1

−1

=
π

2
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Integration over arbitrary domains.

Definition: Let D ⊂ Rn ba a compact and measurable set. We call
Z = {D1, . . . ,Dm} an universal partition of D, if the sets Dk are compact,
measurable and connected and if

m⋃
j=1

Dj = D and ∀ i 6= j : D0
i ∩ D0

j = ∅.

We call
diam(Dj) := sup { ‖x− y‖ | x, y ∈ Dj }

the diameter of the set Dj and

‖Z‖ := max { diam(Dj) | j = 1, . . . ,m }

the fineness of the universal partition Z .
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Riemann sums for universal partitions.

For a continuous function f : D → R we define the Riemann sums

Rf (Z ) =
m∑
j=1

f (xj) vol(Dj)

with arbitrary xj ∈ Dj , j = 1, . . . ,m.

Theorem: For any sequence (Zk)k∈N of universal partitons of D with
‖Zk‖ → 0 (as k →∞) and for ony sequence of related Riemann sums
Rf (Zk) we have

lim
k→∞

Rf (Zk) =

∫
D
f (x)dx
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Center (of mass) of areas and solids.

An important application of the area integrals is the calculation of the
centers (of mass) of areas and solids.

Definition: Let D ⊂ R2 (or R3) be a measurable set and ρ(x), x ∈ D, a
given mass density. Then the center (of mass) of the area (or the solid) D
is given by

xs :=

∫
D ρ(x)xdx∫
D ρ(x)dx

The numerator integral (over a vector valued function) is intended
componentwise (and gives as result a vector).
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Example.

Calculate the center of mass of the pyramid P

P :=
{

(x , y , z)T | max(|y |, |z |) ≤ ax

2h
, 0 ≤ x ≤ h

}
Calculate the volume of P under assumption of constant mass density

vol (P) =

∫ h

0

∫ ax
2h

− ax
2h

∫ ax
2h

− ax
2h

dz dy dx

=

∫ h

0

∫ ax
2h

− ax
2h

ax

h
dy dx

=

∫ h

0

(ax
h

)2
dx =

1

3
a2h
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Continuation of the example.

and ∫ h

0

∫ ax
2h

− ax
2h

∫ ax
2h

− ax
2h

 x
y
z

 dz dy dx =

∫ h

0

∫ ax
2h

− ax
2h


ax2

h

axy
h
0

 dy dx

=

∫ h

0

 a2x3

h2

0
0

 dx

=

 1
4a

2h2

0
0


The center of mass of P lies in the point xs = ( 3

4h, 0, 0)T .
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Moments of inertia of areas and solids.

Another important application of area integrals is the calculation of
moments of inertia of areas and solids.

Definition: (moments of inertia with respect to an axis)

Let D ⊂ R2 (or R3) be a measurable set, ρ(x) denotes for x ∈ D a mass
density and r(x) the distance of the point x ∈ D from the given axis of
rotation.

Then the moment of inertia of D with respect to this axis is given by

Θ :=

∫
D
ρ(x)r2(x)dx
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Example.

We calculate the moment of inertia of a homogeneous cylinder

Z :=
{

(x , y , z)T : x2 + y2 ≤ r2,−l/2 ≤ z ≤ l/2
}

with respect to the x–axis assuming a constant density ρ.

Θ =

∫
Z

ρ(y2 + z2)d(x , y , z) = ρ

∫
Z

(y2 + z2)d(x , y , z)

= ρ

∫ r

−r

∫ √r2−x2

−
√
r2−x2

∫ l/2

−l/2

(y2 + z2) dz dy dx

= ρ

∫ r

−r

∫ √r2−x2

−
√
r2−x2

(ly2 +
l3

12
) dy dx

= ρ
πlr2

12
(3r2 + l2)
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The theorem of transformation.

Aim: A generalisation of the (one dimensional) rule of substitution∫ ϕ(b)

ϕ(a)

f (x) dx =

∫ b

a

f (ϕ(t))ϕ′(t) dt

Theorem: (Theorem of transformation) Let Φ : U → Rn, U ⊂ Rn be open and a
C1–map. Let D ⊂ U be a compact, measurable set such that Φ is a
C1–diffeomorphisms on D0. Then Φ(D) is compact and measurable and for any
continuous function f : Φ(D)→ R the rule of transformation∫

Φ(D)

f (x)dx =

∫
D

f (Φ(u)) |det JΦ(u)| du

holds.
Remark: Note that the rule of transformation requires the bijectivety of Φ only
on the inertior D0 of D – not on the boundary ∂D!
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Example.

Calculate the center of mass of a homogeneous spherical octant

V = {(x , y , z , )T | x2 + y2 + z2 ≤ 1 und x , y , z ≥ 0}

It is easier to calculate the center of mass using spherical coordinates: x
y
z

 =

 r cosϕ cosψ
r sinϕ cosψ

r sinψ

 = Φ(r , ϕ, ψ)

The transformation is defined on R3 and with

D = [0, 1]×
[
0,
π

2

]
×
[
0,
π

2

]
we have Φ(D) = V . It is Φ on D0 a C1–diffeomorphisms with

det JΦ(r , ϕ, ψ) = r2 cosψ
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Continuation of the example.

According to the theorem of transformation it follows

vol (V ) =

∫
V

dx =

∫ 1

0

∫ π/2

0

∫ π/2

0

r2 cosψdψdϕdr =
π

6

and

vol (V ) · xs =

∫
V

x dx =

∫ 1

0

∫ π/2

0

∫ π/2

0

(r cosϕ cosψ) r2 cosψ dψ dϕ dr

=

∫ 1

0

r3 dr ·
∫ π/2

0

cosϕ dϕ ·
∫ π/2

0

cos2 ψ dψ =
π

16

The it follows xs = 3
8 .

In Analogy we calculate ys = zs = 3
8 .
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The Theorem of Steiner.

Theorem: (Theorem of Steiner) For the moment of inertia of a homogeneous
solid K with total mass m with respect to a given axis of rotation A we have

ΘA = md2 + ΘS

S is the axis through to center of mass of the solid K parallel to the axis A and d
the distance of the center of mass xs from the axis A.

Idea of the proof: Set x := Φ(u) = xs + u. Then with the unit vector a in
direction of the axis A

ΘA = ρ

∫
K

(〈x, x〉 − 〈x, a〉2)dx

= ρ

∫
D

(〈xs + u, xs + u〉 − 〈xs + u, a〉2)dx

where
D := {x− xs | x ∈ K}
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Chapter 3. Integration over general areas

3.2 Line integrals

We already had a defintion of a line integral of a scalar field for a piecewise
C1–curve c : [a, b]→ D, D ⊂ Rn, and a continuous scalar function f : D → R∫

c

f (x) ds :=

∫ b

a

f (c(t))‖ċ(t)‖ dt

where ‖ · ‖ denotes the Euklidian norm.

Generalisation: Line integrals of vector valued functions, i.e.∫
c

f(x)dx :=?

Application: A point mass is moving along c(t) in a force field f(x).

Question: How much physical work has to be done along the curve?
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Line integral on vector fields.

Definition: For a continuous vector field f : D → Rn, D ⊂ Rn open, and a
piecewise C1–curve c : [a, b]→ D we define the line integral on vector
fields by ∫

c
f(x)dx :=

∫ b

a
〈f(c(t), ċ(t)〉 dt

Derivation: Approximate the curve by piecewise linear line segments with
corners c(ti ), where

Z = {a = t0 < t1 < · · · < tm = b}

is a partition of the interval [a, b].

Then the workload along the curve c(t) in the force field f(x) is
approximately given by :

A ≈
m−1∑
i=0

〈f(c(ti )), c(ti+1)− c(ti )〉
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Continuation of the derivation.

Thus:

A ≈
n∑

j=1

m−1∑
i=0

fj(c(ti ))(cj(ti+1)− cj(ti ))

=
n∑

j=1

m−1∑
i=0

fj(c(ti ))ċj(τij)(ti+1 − ti )

For a sequence of partitions Z with ‖Z‖ → 0 the left side converges to the
above defined line integral on vector fields.

Remarks: For a closed curve c(t), i.e. c(a) = c(b), we use the notation∮
c

f(x) dx
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Properties of the line integral on vector fields.

Linearity: ∫
c
(αf(x) + βg(x)) dx = α

∫
c

f(x) dx + β

∫
c

g(x) dx

It is: ∫
−c

f(x) dx = −
∫
c

f(x) dx,

where (−c)(t) := c(b + a− t), a ≤ t ≤ b, denotes the inverted path.

It is ∫
c1+c2

f(x) dx =

∫
c1

f(x) dx +

∫
c2

f(x) dx

where c1 + c2 denotes the path composed by c1 and c2 such that the
end point of c1 coincides with the starting point of c2.
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Further properties of the line integral on vector fields.

The line integral on vector fields is invariant under paramterisation.

It is ∫
c

f(x) dx =

∫ b

a
〈f(c(t)),T(t)〉 ‖ċ(t)‖ dt =

∫
c
〈f,T〉 ds

with the tangent unit vector T(t) :=
ċ(t)

‖ċ(t)‖
.

Formal notation:∫
c

f(x) dx =

∫
c

n∑
i=1

fi (x) dxi =
n∑

i=1

∫
c
fi (x) dxi

with ∫
c
fi (x) dxi :=

∫ b

a
fi (c(t))ċi (t) dt
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Example.

Let x ∈ R3 and

f(x) := (−y , x , z2)T

c(t) := (cos t, sin t, at)T with 0 ≤ t ≤ 2π

We calculate∫
c

f(x) dx =

∫
c
(−ydx + xdy + z2dz)

=

∫ 2π

0
(− sin t)(− sin t) + cos t cos t + a2t2a) dt

=

∫ 2π

0
(1 + a3t2) dt

= 2π +
a3

3
(2π)3
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The circulation of a field along a curve.

Definition: Let u(x) be the velocity field of a moving fluid. We call the
line integral

∮
c u(x)dx along a closed curve the circulation of the field u(x).

Example: For the field u(x , y) = (y , 0)T ∈ R2 we obtain along the curve
c(t) = (r cos t, 1 + r sin t)T , 0 ≤ t ≤ 2π the circulation∮

c
u(x) dx =

∫ 2π

0
(1 + r sin t)(−r sin t)dt

=

∫ 2π

0
(−r sin t − r2 sin2 t)dt

=

[
r cos t − r2

2
(t − sin t cos t)

]2π

0

= −πr2
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Curl free vector fields.

Definition: A continuous vector field f(x), x ∈ D ⊂ Rn, is called curl free,
if the line integral along all closed and piecewise C1–curves c(t) in D
vanishes, i.e. ∮

c
f(x) dx = 0 for all closed c.

Remark: A vector field is curl free if an only if the value of the line
integral

∫
c f(x)dx depends only from the starting and the end point of the

path, but not on the specific path c. In this case we call the line integral
path independent.

Question: Which criteria on the vector field f(x) guarantee the path
independency of the line integral?
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Connected sets.

Definition: A subset D ⊂ Rn is called connected, if any two points in D
can be connected by a piecewise C1–curve:

∀ x0, y0 ∈ D : ∃ c : [a, b]→ D : c(a) = x0 ∧ c(b) = y0

An open and connected set D ⊂ Rn is called domain in Rn.

Remark: An open set D ⊂ Rn is not connected if and only if there exist
disjoint and open sets U1,U2 ⊂ Rn with

U1 ∩ D 6= ∅, U2 ∩ D 6= ∅, D ⊂ U1 ∪ U2

Not connected sets are – in contrary to connected sets – a separable in at
least two disjoint open sets.
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Gradient fields, antiderivatives, potentials.

Definition: Let f : D → Rn be a vector field on a domain D ⊂ Rn. The vector
field is called gradient field, if there is a scalar C1–function ϕ : D → R with

f(x) = ∇ϕ(x)

The function ϕ(x) is called antiderivative or potential of f(x), and the vector field
f(x) is called conservativ.

Remark: Suppose a mass point is moving in a conservative force field K(x), i.e. K
has a potential ϕ(x) such that K(x) = ∇ϕ(x). The the function U(x) = −ϕ(x)
gives the potential energy:

K(x) = mẍ = −∇U(x)

Multiplying this relation with ẋ we obtain

m〈ẍ, ẋ〉+ 〈∇U(x), ẋ〉 =
d

dt

(
1

2
m‖ẋ‖2 + U(x)

)
= 0
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Fundamental theorem on line integrals.

Theorem: (Fundamental theorem on line integrals)

Let D ⊂ Rn be a domain and f(x) a continuous vector field on D.

1) If f(x) has a potential ϕ(x), then for all piecewise
C1–curves c : [a, b]→ D we have:∫

c

f(x) dx = ϕ(c(b))− ϕ(c(a))

In particular the line integral is path independent and f(x)
is curl free.

2) In the opposite direction we have: If f(x) is curl free, then f(x) has a
potential ϕ(x).
Let x0 ∈ D be a fixed point and cx (for x ∈ D) denotes an arbitrary piecewise
C1–curve in D connecting the points x0 and x, then ϕ(x) is given by:

ϕ(x) =

∫
cx

f(x) dx + const.
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Example I.

The central force field
K(x) :=

x

‖x‖3

has the potential

U(x) = − 1

‖x‖
= −(x2

1 + x2
2 + x2

3 )−1/2

since
∇U(x) = (x2

1 + x2
2 + x2

3 )−3/2(x , y , z)T =
x

‖x‖3

The workload along a piecewise C1–curve c : [a, b]→ R3 \ {0} is given by

A =

∫
c

K(x) dx =

(
1

‖c(a)‖
− 1

‖c(b)‖

)
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Example II.

The vector field

f(x) :=

 2xy + z3

x2 + 3z
3xz2 + 3y


has the potential

ϕ(x) = x2y + xz3 + 3yz

For an arbitrary C1–curve c(t) from P = (1, 1, 2) to Q = (3, 5,−2) we
have ∫

c
f(x) dx = ϕ(Q)− ϕ(P) = −9− 15 = −24

If we interpret f(x) as electrical field, then the line integral on vector fields
represents the electrical voltage between the two points P and Q.
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Example III.

Consider the vector field

f(x , y) =
1

x2 + y2

(
−y
x

)
mit (x , y)T ∈ D = R2 \ {0}

For the unit sphere c(t) := (cos t, sin t)T , 0 ≤ t ≤ 2π, we obtain∫
c

f(x) dx =

∫ 2π

0
〈f(c(t), ċ(t)〉 dt

=

∫ 2π

0

〈(
− sin t

cos t

)
,

(
− sin t

cos t

)〉
dt

=

∫ 2π

0
1 dt = 2π

f(x , y) is therefore not curl free and has no potential on D.

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 150 / 182



Requirements for potentials.

Remark: If f(x), x ∈ D ⊂ R3 is a C1–vector field with potential ϕ(x), then

curl f(x) = curl (∇ϕ(x)) = 0 für alle x ∈ D

Thus curl f(x) = 0 is a necessary condition for the existence of a potential.

If we define for a vector field f : D → R2, D ⊂ R2, the scalar curl

curl f(x , y) :=
∂f2
∂x

(x , y)− ∂f1
∂y

(x , y)

then curl f(x , y) = 0 is a necessary condition even in 2 dimensions.

The condition
curl f(x) = 0

is a sufficient condition, if the domain D is simply connected, i.e. if D has no
”holes”.
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Example.

We consider the vector field

f(x , y) =
1

x2 + y2

(
−y
x

)
with (x , y)T ∈ D = R2 \ {0}

Calculating the curl gives

curl

[
1

r2

(
−y
x

)]
=

∂

∂x

(
x

x2 + y2

)
+

∂

∂x

(
y

x2 + y2

)

=
1

x2 + y2
− 2x2

(x2 + y2)2
+

1

x2 + y2
− 2y2

(x2 + y2)2

= 0

The curl of f(x , y) vanishes.

But f(x , y) has on the set D = R2 \ {0} no potential.

The domain is not simply connected.
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The integral theorem of Green for vector fields in R2.

Theorem: (Integral theorem of Green)

Let f(x) be a C1–vector field on a domain D ⊂ R2. Let K ⊂ D be compact
and projectable with respect to both coordinates, such that K is bounded
by a closed and piecewise C1–curve c(t).

The parameterisation of c(t) is chosen such that K is always on the left
when going along the curve with increasing parameter (positive
circulation). Then: ∮

c
f(x) dx =

∫
K

curl f(x) dx

Remark:

The integral theorem is also valid for domains which can be splittet in
finite many domains which all are projectable with respect to both
coordinate directions, so called Green domains.
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Alternative formulation of the integral theorem of Green I.

We have seen that the relation∮
c

f(x) dx =

∮
c

〈f,T〉 ds

holds, where T(t) = ċ(t)
‖ċ(t)‖ denotes the tangent unit vector.

With the intergral thoerem of Green we obtain∫
K

curl f(x) dx =

∮
∂K

〈f,T〉 ds

Is f(x) a velocity field, then the fluid motion described by f is curl free if
curl f(x) = 0, since ∮

c

f(x)dx

is the circulation of f(x).
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Alternative formulation of the integral theorem of Green II.

If we substitute in the above equations the vector T by the outer normal vector
n = (T2,−T1)T , we obtain∮

∂K

〈f, n〉 ds =

∮
∂K

(f1T2 − f2T1)ds =

∮
∂K

〈(
−f2
f1

)
,T

〉
ds

=

∫
K

rot

(
−f2
f1

)
dx =

∫
K

div f dx

and thus the relation ∫
K

div f(x) dx =

∮
∂K

〈f, n〉 ds

If f(x) is the velocity field of a fluid motion, then the right side describes describes
the total flow of the fluid through the boundary of K . Therefore if div f(x) = 0,
then the fluid motion is is source and sink free (or divergence free).
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Back again to the existence of potentials.

Conclusion: If curl f(x) = 0 for all x ∈ D, D ⊂ R2 a domain, then we have∮
c

f(x) dx = 0

for every closed piecewise C1–curve, which surounds a Green domain
B ⊂ D completely.

Definition: A domain D ⊂ Rn is called simply connected, if any closed
curve c : [a, b]→ D can be shrinked continuously in D to a point in D.
More precise: There is a continuous map for x0 ∈ D

Φ : [a, b]× [0, 1]→ D

with Φ(t, 0) = c(t), for all t ∈ [a, b] and Φ(t, 1) = x0 ∈ D, for all
t ∈ [a, b]. The map Φ(t, s) is called a homotopy.
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Criteria for integrability for potentials.

Theorem: Let D ⊂ Rn be a simply connected domain. A C1–vector field
f : D → Rn has a potential on D if and only if the integrability criteria

J f(x) = (J f(x))T for all x ∈ D

are satisfied, i.e. if
∂fk
∂xj

=
∂fj
∂xk

∀ j , k

Remark: For n = 2, 3 the integrability criteria coincide with

rot f(x) = 0

.
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Example.

For x ∈ R3 \ {0} let the vector field be

f(x) =


2xy

r2
+ sin z

ln r2 +
2y2

r2
+ zey

2yz

r2
+ ey + x cos z

 with r2 = x2 + y2 + z2.

We would like to study the existence of a potential for f(x).

The set D = R3 \ {0} is apparentely simply connected. In addition we have

curl f(x) = 0

Thus f(x) has a potential.
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Calculation of the potential.

We need to have: f(x) = ∇ϕ(x). Thus:

∂ϕ

∂x
= f1(x , y , z) =

2xy

r2
+ sin z

By integration with respect to the variable x we obtain

ϕ(x) = y ln r2 + x sin z + c(y , z)

with an unknown function c(y , z).

Pluging into the equation

∂ϕ

∂y
= f2(x , y , z) = ln r2 +

2y2

r2
+ zey

gives

ln r2 +
2y2

r2
+
∂c

∂y
= ln r2 +

2y2

r2
+ zey
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Calculation of the potential (continuation).

From this we get the condition
∂c

∂y
= zey

and therefore
c(y , z) = zey + d(z)

for an unknown function d(z). So far we know:

ϕ(x) = y ln r2 + x sin z + zey + d(z)

The last condition is

∂ϕ

∂z
= f3(x , y , z) =

2yz

r2
+ ey + x cos z

Therefore d ′(z) = 0 and the potential is given by

ϕ(x) = y ln r2 + x sin z + zey + c for c ∈ R
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Chapter 3. Integration in higher dimensions

3.3 Surface integrals

Definition: Let D ⊂ R2 be a domain and p : D → R3 a C1–map

x = p(u) with x ∈ R3 and u = (u1, u2)T ∈ D ⊂ R2

If for all u ∈ D the two vectors

∂p

∂u1
and

∂p

∂u2

are linear independent, we call

F := {p(u) | u ∈ D}

a surface or a piece o surface. The map x = p(u) is called a
parameterisation or parameter representation of the surface F .
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Example I.

We consider for a given r > 0 the map

p(ϕ, z) =

 r cosϕ
r sinϕ

z

 for (ϕ, z) ∈ R2.

The corresponding parameterized surface is an unbounded cylinder in R3.

If we restrict the area of definition, e.g.

(ϕ, z) ∈ K := [0, 2π]× [0,H] ⊂ R2

we obtain a bounded cylinder of height H.

The partial derivatives

∂p

∂ϕ
=

 −r sinϕ
r cosϕ

0

 ,
∂p

∂z
=

 0
0
1


of p(ϕ, z) are linearly independent on R2.
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Example II.

The graph of a scalar C1–function ϕ : D → R, D ⊂ R2, is a surface.

A parametrisation is given by

p(u1, u2) :=

 u1

u2

ϕ(u1, u2)

 for u ∈ D

The partial derivatives

∂p

∂u1
=

 1
0
ϕu1

 ,
∂p

∂u2
=

 0
1
ϕu2


are linear independent.
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The tangential plane on a surface.

The two linear independent vectors

∂p

∂u1
(u0) und

∂p

∂u2
(u0)

are tangential on the surface F .

The two vectore span the tangential plane Tx0F of the surface F at the
point x0 = p(u).

The tangential plane has a parameter representation

Tx0F : x = x0 + λ
∂p

∂u1
(u0) + µ

∂p

∂u2
(u0) for λ, µ ∈ R.

Question: How can wie calculate the size of a given surface F?
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The surface integral of a piece of surface.

Definition: Let p : D → R3 be a parameterisation of a surface, and let K ⊂ D be
compact, measurable and connected. Then the ”content” of p(K ) is defined by
the surface integral ∫

p(K)

do :=

∫
K

∥∥∥∥ ∂p

∂u1
(u)× ∂p

∂u2
(u)

∥∥∥∥ du

We call

do :=

∥∥∥∥ ∂p

∂u1
(u)× ∂p

∂u2
(u)

∥∥∥∥ du

the surface element of the surface x = p(u).

Remark: The surface integral is independent of the particular parameterisation
of the surface. This follows from the theorem of transformation.

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 165 / 182



Example.

For the lateral surface of a cylinder Z = p(K ) with

K := [0, 2π]× [0,H] ⊂ R2

and

x = p(ϕ, z) :=

 r cosϕ
r sinϕ

z

 for (ϕ, z) ∈ R2

we obtain ∥∥∥∥ ∂p

∂ϕ
× ∂p

∂z

∥∥∥∥ = r

the value

O(Z ) =

∫
Z
do =

∫
K
rd(ϕ, z) =

∫ 2π

0

∫ H

0
rdzdϕ = 2πrH
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Example.

If the surface is the graph of a scalar function, i.e. x3 = ϕ(x1, x2), the for
the related tangential vectors we have

∂p

∂x1
× ∂p

∂x2
=

 1
0
ϕx1

 ×
 0

1
ϕx2

 =

 −ϕx1

−ϕx2

1


Thus we obtain ∥∥∥∥ ∂p

∂x1
× ∂p

∂x2

∥∥∥∥ =
√

1 + ϕ2
x1

+ ϕ2
x2

and

O(p(K )) =

∫
p(K)

do

=

∫
K

√
1 + ϕ2

x1
+ ϕ2

x2
d(x1, x2)
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Example.

For the surface of the parabloid P, given by

P := {(x1, x2, x3)T ∈ R3 | x3 = 2− x2
1 − x2

2 , x
2
1 + x2

2 ≤ 2},

we have

O(P) =

∫
x2

1 +x2
2≤2

√
1 + 4x2

1 + x2
2 d(x1, x2)

=

∫ √2

0

∫ 2π

0

√
1 + 4r2 r dϕ dr = π

∫ 2

0

√
1 + 4s ds

= π

[
1

6
(1 + 4s)3/2

]2

0

= π

(
1

6
(27− 1)

)
=

13

3
π

Jens Struckmeier (Mathematik, UniHH) Analysis III for students in engineering 168 / 182



Remark.

For the vector product of two vectors a, b ∈ R3 we have

‖a× b‖2 = ‖a‖2‖b‖2 − 〈a, b〉2

Thus we have∥∥∥∥ ∂p

∂x1
× ∂p

∂x2

∥∥∥∥2

=

∥∥∥∥ ∂p

∂x1

∥∥∥∥2 ∥∥∥∥ ∂p

∂x2

∥∥∥∥2

−
〈
∂p

∂x1
,
∂p

∂x2

〉2

If we define

E :=

∥∥∥∥ ∂p

∂x1

∥∥∥∥2

, F := 〈 ∂p

∂x1
,
∂p

∂x2
〉2, G :=

∥∥∥∥ ∂p

∂x2

∥∥∥∥2

,

we obtain the relation

do =
√
EG − F 2 d(u1, u2)
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Example.

For the surface element of the sphere

S2
r = {(x1, x2, x3)T ∈ R3 | x2

1 + x2
2 + x2

3 = r2}

we obtain using the parameterisation via spherical coordinates x1

x2

x3

 = r

 cosϕ cos θ
sinϕ cos θ

sin θ

 für (ϕ, θ) ∈ [0, 2π]×
[
−π

2
,
π

2

]
the relations

∂p

∂ϕ
= r

 − sinϕ cos θ
cosϕ cos θ

0

 und
∂p

∂θ
= r

 − cosϕ sin θ
− sinϕ sin θ

cos θ


Thus we have

E = r2 cos2 θ, F = 0, G = r2
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Continuation of the examples.

With
E = r2 cos2 θ, F = 0, G = r2

we obtain the relation

do =
√

EG − F 2 d(u1, u2)

and therefore

do = r2 cos θ d(ϕ, θ) für (ϕ, θ) ∈ [0, 2π]×
[
−π

2
,
π

2

]
We can calculate the surface of the sphere as follows

O =

∫
S2
r

do =

∫ π/2

−π/2

∫ 2π

0
r2 cos θ dϕ dθ

= 2πr2 sin θ
∣∣∣π/2

−π/2
= 4πr2
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Surface integrals of scalar and vector fields.

Definition: Let x = p(u) be a C1–parametrisation of a surface F = p(K ),
where K ⊂ D is compact, measurable and connected.

For a continuous function f : F → R the surface integral of a scalar
field is defined as∫

F
f (x) do :=

∫
K
f (p(u))

∥∥∥∥ ∂p

∂u1
× ∂p

∂u2

∥∥∥∥ du

For a continuous vector field f : F → R3 the surface integral of a
vector field is defined as∫

F
f(x) do :=

∫
K

〈
f(p(u)),

∂p

∂u1
× ∂p

∂u2

〉
du
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Alternative representation of surface integrals.

Othere representations of surface integrals of vector fields

The unit normal vector n(x) on a surface F is given by

n(x) = n(p(u)) =

∂p

∂u1
× ∂p

∂u2∥∥∥∥ ∂p

∂u1
× ∂p

∂u2

∥∥∥∥
Therefore we can write∫

F
f(x) do =

∫
K

〈
f(p(u)),

∂p

∂u1
× ∂p

∂u2

〉
du

=

∫
K
〈f(p(u)), n(p(u))〉

∥∥∥∥ ∂p

∂u1
× ∂p

∂u2

∥∥∥∥ du

=

∫
F
〈f(x), n(x)〉 do
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Interpretation of surface integrals.

Remark:

If f (x) is the mass density of a surface with a mass distribution, the
the surface integral of the scalar field (mass density) gives the total
mass of the surface.

If f(x) is the velocity field of a stationary flow, then the surface
integral of the vector field (velocity field) gives the amount of flow
which passes the surface F per time unit, i.e. the flow of f(x) through
the surface F .

If F is a closed surface, i.e. surface (boundary) of a compact and
simply connected region (body) in R3, we write∮

F
f (x) do bzw.

∮
F

f(x) do

The parameterisation is chosen such that the unit normal vector n(x)
is pointing outwards.
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The divergence theorem (Gauß theorem).

Theorem: (divergence theorem/Gauß theorem) Let G ⊂ R3 a compact
and measurable standard domain, i.e. G is projectable with respect to all
coordinates. The boundary ∂G consists of finite many smooth surfaces
with outer normal vector n(x).
If f : D → R3 is a C1–vector field with G ⊂ D, then∫

G
div f(x) dx =

∮
∂G

f(x) do

Interpretation of the Gauß theorem: The left side is an integral of the
scalar function g(x) := div f(x) over G . The right hand side is a surface
integral of the vector field f(x). If f(x) is the vectorfield of an
incompressible flow, then div f(x) = 0 and therefore∮

∂G
f(x) do = 0
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Example.

Consider the vector field

f(x) = x = (x1, x2, x3)T

and the sphere K :

K := {(x1, x2, x3)T ∈ R3 | x2
1 + x2

2 + x2
3 ≤ 1}

We have
div f(x) = 3

and thus ∫
K

div f(x) dx = 3 · vol(K ) = 4π

The related surface integral can be calculated easily using spherical
coordinates.
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The Green formulas.

Theorem: (Green formulas) Let the set G ⊂ R3 satisfy the prerequisites
of the Gauß theorem. For C2–functions f , g : D → R, G ⊂ D we have the
relations: ∫

G
(f ∆g + 〈∇f ,∇g〉) dx =

∮
∂G

f
∂g

∂n
do

∫
G

(f ∆g − g∆f ) dx =

∮
∂G

(
f
∂g

∂n
− g

∂f

∂n

)
do

We denote by
∂f

∂n
(x) = Dn f (x) for x ∈ ∂G

the directional derivative of f (x) in the direction of the outer unit normal
vector n(x).
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Proof of the Green formulas.

We set
F(x) = f (x) · ∇g(x)

Then we have

div F(x) =
∂

∂x1

(
f · ∂g

∂x1

)
+

∂

∂x2

(
f · ∂g

∂x2

)
+

∂

∂x3

(
f · ∂g

∂x3

)
= f ·∆g + 〈∇f ,∇g〉

Now we apply the Gauß theorem:∫
G

(f ∆g + 〈∇f ,∇g〉) dx =

∫
G

div F(x) dx =

∮
∂G

〈F, n〉 do

=

∮
∂G

f 〈∇g , n〉 do =

∮
∂G

f
∂g

∂n
do

The second formula follows directely by exchanging f and g .
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The Stokes theorem.

Theorem: (Stokes theorem)

Let f : D → R3 be a C1–vector field on a domain D ⊂ R3.

Let F = p(K ) be a surface in D, F ⊂ D, with parameterisation x = p(u),
u ∈ R2. Let K ⊂ R2 be a Green area.

The boundary ∂K is parameterised by a piecewise smooth C1–curve c and
the image c̃(t) := p(c(t)) parameterises the boundary ∂F of the surface F .

The orientation of the boundary curve c̃(t) is chosen such that
n(c̃(t))× ˙̃c(t) points in the direction of the surface.

Then we have ∫
F

curl f(x) do =

∮
∂F

f(x) dx
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Example.

Given the vector field

f(x , y , z) = (−y , x ,−z)T

and let the closed curve c : [0, 2π]→ R3 be parameterised by

c(t) = (cos t, sin t, 0)T für 0 ≤ t ≤ 2π

Then: ∮
c

f(x) dx =

∫ 2π

0
〈f(c(t)), ċ(t)〉 dt

=

∫ 2π

0

〈 − sin t
cos t

0

 ,

 − sin t
cos t

0

〉 dt

=

∫ 2π

0
(sin2 t + cos2 t) dt = 2π
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Continuation of the example.

We define a surface F ⊂ R3, bounded by the curve c(t): x
y
z

 =

 cosϕ cosψ
sinϕ cosψ

sinψ

 =: p(ϕ,ψ)

with (ϕ,ψ) ∈ K = [0, 2π]× [0, π/2], i.e. the surface F is the upper half
sphere.

Stokes theorem tells us:∫
F

curl f(x) do =

∮
c=∂F

f(x) dx

We have already calculated the right side, a surface integral of a vector
field: ∮

c=∂F
f(x) dx = 2π
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Completion of the example.

It remains a surface integral of a vector field:∫
F

curl f(x) do =

∫
K

〈
curl f(p(ϕ,ψ)),

∂p

∂ϕ
× ∂p

∂ψ

〉
dϕdψ

Attention: the right hand side is an intergal over a domain.

We have curl f(x) = (0, 0, 2)T and

∂p

∂ϕ
× ∂p

∂ψ
=

 cosϕ cos2 ψ
sinϕ cos2 ψ
sinψ cosψ


Thus:∫
F

curl f(x) do =

∫ π/2

0

∫ 2π

0
2 sinψ cosψ dϕdψ = 2π

∫ π/2

0
sin(2ψ) dψ = 2π
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