Analysis III for Engineering Students

Work Sheet 7

Exercise 1:

Given a vector field $\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with

$$
\boldsymbol{f}(x, y, z)=\left(\sin y+3 x^{2} z^{2}, x \cos y+\frac{1}{1+y^{2}}, 1+2 x^{3} z\right)^{T} .
$$

a) Show the existence of a potential for f without calculating it.
b) Calculate a potential by successively integrating \boldsymbol{f} and
c) using the fundamental theorem for line integrals.
d) Given a curve $\mathbf{c}:[0,3 \pi / 2] \rightarrow \mathbb{R}^{3}$ with $\mathbf{c}(t)=(\cos t, 0, \sin t)^{T}$. Compute the line integral

$$
\int_{c} \boldsymbol{f}(\boldsymbol{x}) d \boldsymbol{x}
$$

e) Plot the curve \mathbf{c} using the MATLAB function 'plot3'.

Exercise 2:

Given a vector field $\boldsymbol{f}(x, y, z)=\left(0,0, z^{3}\right)^{T}$ and the body

$$
H=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 16,0 \leq y\right\} .
$$

a) Make a sketch of H.
b) Give parameterization for each of surface segments bounding H.
c) Calculate the flow of f through these boundary segments.
d) Compute the volume integral $\int_{H} \operatorname{div} \boldsymbol{f}(x, y, z) d(x, y, z)$.

