Analysis III for Engineering Students
 Work Sheet 6

Exercise 1:

Compute the following integrals:
a) $\int_{0}^{1} \int_{0}^{2}(2 x+y)^{2} d y d x$,
b) $\int_{R} \frac{1}{x y^{2}+x} d(x, y) \quad$ with $\quad R=[1,2] \times[0,1]$,
c) $\int_{Q} \cos y+y \sqrt{x+z} d(x, y, z) \quad$ with $\quad Q=[0,2] \times[0, \pi] \times[1,2]$.

Exercise 2:

a) Draw the closed area K given by $x \leq 0, y \leq 0,0 \leq z$ and $x^{2}+y^{2}+z^{2}=9$ and represent it as a "normal" area.
b) Compute $\int_{K} 8 y z d(x, y, z)$.

Exercise 3:

Given a rotational paraboloid P by $x^{2}+y^{2} \leq 4$ and $0 \leq z \leq 4-x^{2}-y^{2} . P$ has a constant density ρ.
a) Plot P using the MATLAB-function 'ezgraph3'.
b) For P compute the mass and moment of inertia with respect to the z axis.
c) Compute the moment of inertia of P with respect to the axis D, parallel to the z axis, passing through the point $(1,1,5)^{T}$.

