Analysis III
 for Engineering Students

Homework sheet 6

Exercise 1:

a) For the function

$$
f: Q \rightarrow \mathbb{R}, \quad f(x, y)=6-2 x+4 y
$$

with $Q:=[0,3] \times[0,2]$ compute
(i) Riemannian upper and lower sum for the following equidistant decomposition Z of Q

$$
Q_{i, j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right], \quad i, j=1, \ldots, n
$$

where $x_{i}=\frac{3 i}{n}$ and $y_{j}=\frac{2 j}{n}$
(ii) and the integral of f over Q using Fubini's theorem.
b) (i) Draw the area P enclosed by the functions $f(x)=2 x$ and $g(x)=24-2 x^{2}$ and represent it as the "normal" area.
(ii) Compute $\int_{P} x d(x, y)$.

Exercise 2:

Draw the half cylinder Z given by $1 \leq z \leq 2,0 \leq y$ and $x^{2}+y^{2} \leq 9$ and calculate its center of mass with the density function $\rho(x, y, z)=z$ using cylindrical coordinates.

Exercise 3:

a) For the vector field $\boldsymbol{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $\boldsymbol{f}(x, y)=\binom{y+\sin x}{x y^{2}}$ calculate the integral of the curve (line integral) $\oint_{\mathbf{c}} \boldsymbol{f}(\boldsymbol{x}) d \boldsymbol{x}$.
Here \mathbf{c} is the mathematically positive boundary curve of the area G enclosed by $x^{2} \leq y \leq x$ with $0 \leq x \leq 1$.
b) For the vector field $\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $f(x, y, z)=\left(\begin{array}{c}-z^{2} / 2 \\ 0 \\ x z\end{array}\right)$ calculate the line integral $\int_{\mathbf{c}} \boldsymbol{f}(\boldsymbol{x}) d \boldsymbol{x}$ with the line $\mathbf{c}:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}^{3}$ and $\mathbf{c}(t)=\left(\begin{array}{c}2 \cos ^{2} t \\ 2 \sin t \cos t \\ 2 \sin t\end{array}\right)$.

