Prof. Dr. J. Struckmeier

Dr. K. Rothe, Md. T. Hassan

Analysis III for Engineering Students Work Sheet 4, Solutions

Exercise 1:

Compute the Taylor polynomial of second degree for the function

$$f(x,y) = (y + \cos y)\sin x$$

about the point $(x_0, y_0) = \left(\frac{\pi}{2}, 0\right)$ and provide the upper bound for the error of approximation of f by T_2 at point (x, y) = (0, 0).

Solution:

$$f(x,y) = (y + \cos y)\sin x \quad \Rightarrow \quad f\left(\frac{\pi}{2}, 0\right) = 1$$

$$f_x(x,y) = (y + \cos y)\cos x \quad \Rightarrow \quad f_x\left(\frac{\pi}{2}, 0\right) = 0$$

$$f_y(x,y) = (1 - \sin y)\sin x \quad \Rightarrow \quad f_y\left(\frac{\pi}{2}, 0\right) = 1$$

$$f_{xx}(x,y) = -(y + \cos y)\sin x \quad \Rightarrow \quad f_{xx}\left(\frac{\pi}{2}, 0\right) = -1$$

$$f_{xy}(x,y) = (1 - \sin y)\cos x \quad \Rightarrow \quad f_{xy}\left(\frac{\pi}{2}, 0\right) = 0$$

$$f_{yy}(x,y) = -\cos y\sin x \quad \Rightarrow \quad f_{yy}\left(\frac{\pi}{2}, 0\right) = -1$$

$$T_{2}\left(x, y; \frac{\pi}{2}, 0\right) = f\left(\frac{\pi}{2}, 0\right) + f_{x}\left(\frac{\pi}{2}, 0\right)\left(x - \frac{\pi}{2}\right) + f_{y}\left(\frac{\pi}{2}, 0\right)y$$

$$+ \frac{1}{2}\left(f_{xx}\left(\frac{\pi}{2}, 0\right)\left(x - \frac{\pi}{2}\right)^{2} + 2f_{xy}\left(\frac{\pi}{2}, 0\right)\left(x - \frac{\pi}{2}\right)y + f_{yy}\left(\frac{\pi}{2}, 0\right)y^{2}\right)$$

$$= 1 + y - \frac{1}{2}\left(x - \frac{\pi}{2}\right)^{2} - \frac{y^{2}}{2}$$

The third derivatives are required for the error estimation

$$f_{xxx}(x,y) = -(y + \cos y) \cos x$$

$$f_{xxy}(x,y) = -(1 - \sin y) \sin x$$

$$f_{xyy}(x,y) = -\cos y \cos x$$

$$f_{yyy}(x,y) = \sin y \sin x.$$

We estimate the error at (x, y) = (0, 0) with $\theta \in]0, 1[, (\xi_1, \xi_2) := ((1 - \theta)\frac{\pi}{2}, 0)$. So it holds $0 < \xi_1 < \frac{\pi}{2}$ and $\xi_2 = 0$.

$$\left| f(0,0) - T_2\left(0,0; \frac{\pi}{2},0\right) \right| = \left| R_2\left(0,0; \frac{\pi}{2},0\right) \right|$$

$$= \frac{1}{3!} \left| f_{xxx}(\xi_1,0) \left(0 - \frac{\pi}{2}\right)^3 + 3f_{xxy}(\xi_1,0) \left(0 - \frac{\pi}{2}\right)^2 \cdot (0 - 0) + 3f_{xyy}(\xi_1,0) \left(0 - \frac{\pi}{2}\right) \cdot (0 - 0)^2 + f_{yyy}(\xi_1,0)(0 - 0)^3 \right|$$

$$= \frac{1}{3!} \left| f_{xxx}(\xi_1,0) \right| \cdot \left| -\frac{\pi}{2} \right|^3 = \frac{\pi^3 \left| -(0 + \cos 0) \cos \xi_1 \right|}{48} \le \frac{\pi^3}{48} = 0.645964...$$

The actual error is

$$\left| f(0,0) - T_2\left(0,0;\frac{\pi}{2},0\right) \right| = \left| T_2\left(0,0;\frac{\pi}{2},0\right) \right| = \left| 1 - \frac{1}{2}\left(-\frac{\pi}{2}\right)^2 \right| = 0.233701...$$

Exercise 2:

Compute and classify all stationary points of the following functions

a)
$$f(x,y) = \frac{3x^2}{2} + x^3 - y^3 + 3y$$
,

b)
$$f(x,y) = 2(x^2 + y^2)^2 - x^2 - y^2$$
,

c)
$$f(x,y) = \sqrt{x^2 + y^2}$$
,

d)
$$f(x,y) = x \sin y$$
.

Solution:

a) grad $f(x,y) = (3x + 3x^2, -3y^2 + 3)^T = (3x(1+x), 3(1-y^2))^T = (0,0)^T$ We obtain x = 0 or x = -1 and y = 1 or y = -1, so the points

$$P_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, P_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, P_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, P_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}.$$

Hess
$$f(x,y) = \begin{pmatrix} 3+6x & 0 \\ 0 & -6y \end{pmatrix}$$

Hess $f(P_1) = \begin{pmatrix} 3 & 0 \\ 0 & -6 \end{pmatrix} \Rightarrow \text{ indefinite } \Rightarrow P_1 \text{ saddle point}$

Hess $f(P_2) = \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}$ \Rightarrow positive definite $\Rightarrow P_2$ minimum

Hess $f(P_3) = \begin{pmatrix} -3 & 0 \\ 0 & -6 \end{pmatrix}$ \Rightarrow negative definite $\Rightarrow P_3$ maximum

Hess $f(P_4) = \begin{pmatrix} -3 & 0 \\ 0 & 6 \end{pmatrix} \Rightarrow \text{ indefinite } \Rightarrow P_4 \text{ saddle point}$

Figure 2 a): $f(x,y) = \frac{3x^2}{2} + x^3 - y^3 + 3y$

b) $f(x,y) = 2(x^2+y^2)^2 - x^2 - y^2 \Rightarrow \text{grad } f(x,y) = (4(x^2+y^2)-1)(2x,2y)^T = (0,0)$ $\Rightarrow \text{ stationary points are } (x_0,y_0) = (0,0) \text{ and all points with}$

$$4(x^2 + y^2) - 1 = 0 \Leftrightarrow x^2 + y^2 = \left(\frac{1}{2}\right)^2$$
.

So they are on the circle K of radius $r = \frac{1}{2}$ with center at (0,0).

$$\boldsymbol{H}f(x,y) = \begin{pmatrix} 2(4(x^2+y^2)-1) + 16x^2 & 16xy \\ 16xy & 2(4(x^2+y^2)-1) + 16y^2 \end{pmatrix}$$

$$\boldsymbol{H} \, f(0,0) = \left(\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array} \right) \quad \text{is negative definite}$$

 \Rightarrow $(x_0, y_0) = (0, 0)$ is strict local maximum.

For the stationary points at K we have with $x^2 + y^2 = \frac{1}{4}$:

$$\boldsymbol{H} f(x,y) = \begin{pmatrix} 16x^2 & 16xy \\ 16xy & 16y^2 \end{pmatrix}.$$

We obtain the eigenvalues from the characteristic polynomial

$$p(\lambda) = (16x^2 - \lambda)(16y^2 - \lambda) - 16^2x^2y^2 = \lambda^2 - 16(x^2 + y^2)\lambda = \lambda(\lambda - 4) = 0$$

$$\Rightarrow \lambda_1 = 0, \lambda_2 = 4 \Rightarrow \boldsymbol{H} f(x, y)$$
 ist positive semidefinite.

Hence the points from K can not be local maxima.

Since $r^2 = x^2 + y^2$ and $\tilde{f}(r) = 2r^4 - r^2$ we know that f is rotationally symmetric. \tilde{f} has absolute minima for $r = \pm \frac{1}{2}$ and for r = 0 a strict local maximum.

So the points on K are absolute minima (not strict).

Figure 2 b): $f(x,y) = 2(x^2 + y^2)^2 - x^2 - y^2$

c)
$$f(x,y) = \sqrt{x^2 + y^2}$$

grad
$$f(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)^T = (0,0)^T \implies (x_0, y_0) = (0,0)$$

is not admissible, since grad f in (0,0) does not exist.

So there is no stationary points.

The only remaining point (0,0) is obviously strict global minimum, since f(0,0)=0 and $f(x,y)>0 \Leftrightarrow (x,y)\neq (0,0)$.

Figure 2 c): $f(x,y) = \sqrt{x^2 + y^2}$

d)
$$f(x,y) = x \sin y$$
.

grad
$$f(x, y) = (\sin y, x \cos y)^T = (0, 0)^T$$

$$\Rightarrow$$
 $\sin y = 0$ \Rightarrow $y_k = k\pi$ \Rightarrow $\cos(k\pi) = (-1)^k$ \Rightarrow $x_k = 0$

So the stationary points are given by $(x_k, y_k) = (0, k\pi)$

$$\boldsymbol{H} f(x,y) = \begin{pmatrix} 0 & \cos y \\ \cos y & -x\sin y \end{pmatrix}$$

$$\Rightarrow \boldsymbol{H} f(0, k\pi) = \begin{pmatrix} 0 & (-1)^k \\ (-1)^k & 0 \end{pmatrix}$$

has eigenvalues $\lambda_{1,2} = \pm 1$.

Hence $\boldsymbol{H} f(0, k\pi)$ is indefinite, all stationary points are saddle points.

Figure 2 d): $f(x,y) = x \sin y$

Discussion: 4.12. - 8.12.2023