Analysis III for Engineering Students
 Homework Sheet 4

Exercise 1:

a) Compute Taylor polynomial of second degree about a point $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$ of the following function

$$
f(x, y, z)=x-y+(x-z)^{2}+(y-z)^{3} .
$$

b) Compute Taylor polynomial of third degree of the following function

$$
f(x, y)=x+(y+1) \cosh (x+y)
$$

about a point $(0,0)$.

Exercise 2:

Given the function $\quad f(x, y)=9 x^{4}-12 x^{2} y+4 y^{2}$
a) compute all stationary points of f,
b) try to classify stationary points using the sufficient optimality condition,
c) prove that f has a strict local minimum along every straight line going through zero,
d) classify all stationary points of f,
e) plot the function for example using Matlab commands 'ezsurf' and 'ezcontour'.

