Analysis III for Engineering Students

Work sheet 1

Exercise 1:

Compute the gradients of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
a) $f(x, y)=x^{2}+4 y^{2}$,
b) $f(x, y)=x^{2}-4 y$,
c) $f(x, y)=x^{2}-4 y^{2}$,
d) $f(x, y)=x-4 y$
and draw a graph of different contour lines of functions in the area $[-2,2] \times[-2,2]$. These are the lines for which $f(x, y)=c$ with $c \in \mathbb{R}$ holds.

Exercise 2:

a) Show that for a space variable x the solution to wave equation $u_{t t}=c^{2} u_{x x}$ with a constant $c \in \mathbb{R}$ is given by the function

$$
u(x, t)=2 \sin (x+c t)+3 e^{x-c t} .
$$

b) Show that the function

$$
u(x, y)=e^{-x} \sin y+(x+5)(y-6)
$$

solves the Laplace equation $\Delta u=0$.

Discussion: 23.10.-27.10.23

