Prof. Dr. J. Struckmeier Dr. K. Rothe, T. Hassan

Analysis III for Engineering Students

Work sheet 1, Solutions

Exercise 1:

Compute the gradients of the following functions $f: \mathbb{R}^2 \to \mathbb{R}$

a)
$$f(x,y) = x^2 + 4y^2$$
, b) $f(x,y) = x^2 - 4y$, c) $f(x,y) = x^2 - 4y^2$,

f(x,y) = x - 4y

and draw a graph of different contour lines of functions in the area $[-2,2] \times [-2,2]$. These are the lines for which f(x,y) = c with $c \in \mathbb{R}$ holds.

Solution:

a)
$$f(x,y) = x^2 + 4y^2 \implies \text{grad } f(x,y) = (2x,8y)$$

The MATLAB command for the contour line plot is:

ezcontour('
$$x^2 + 4*y^2$$
',[-2,2,-2,2])

Figure 1 a) $x^2 + 4y^2 = c$ with $c \in \mathbb{R}$

b)
$$f(x,y) = x^2 - 4y \implies \text{grad } f(x,y) = (2x, -4)$$

Figure 1 b) $x^2 - 4y = c$ with $c \in \mathbb{R}$

c)
$$f(x,y) = x^2 - 4y^2 \implies \text{grad } f(x,y) = (2x, -8y)$$

Figure 1 c) $x^2 - 4y^2 = c$ with $c \in \mathbb{R}$

d)
$$f(x,y) = x - 4y$$
 \Rightarrow grad $f(x,y) = (1, -4)$

Figure 1 d) x - 4y = c with $c \in \mathbb{R}$

Exercise 2:

a) Show that for a space variable x the solution to wave equation $u_{tt} = c^2 u_{xx}$ with a constant $c \in \mathbb{R}$ is given by the function

$$u(x,t) = 2\sin(x+ct) + 3e^{x-ct}.$$

b) Show that the function

$$u(x,y) = e^{-x}\sin y + (x+5)(y-6)$$

solves the Laplace equation $\Delta u = 0$.

Solution:

a)
$$u(x,t) = 2\sin(x+ct) + 3e^{x-ct}$$

 $u_t(x,t) = 2c\cos(x+ct) - 3ce^{x-ct}$,
 $u_x(x,t) = 2\cos(x+ct) + 3e^{x-ct}$,

$$u_{tt}(x,t) = -2c^{2}\sin(x+ct) + 3c^{2}e^{x-ct},$$

$$u_{xx}(x,t) = -2\sin(x+ct) + 3e^{x-ct},$$

Hence u solves the wave equation $u_{tt} = c^2 \Delta u$.

b)
$$u(x,y) = e^{-x} \sin y + (x+5)(y-6)$$

$$u_x(x,y) = -e^{-x} \sin y + y - 6$$
,
 $u_y(x,y) = e^{-x} \cos y + x + 5$

$$u_{xx}(x,y) = e^{-x} \sin y ,$$

$$u_{yy}(x,y) = -e^{-x} \sin y$$

Therefore u solves Laplace equation $\Delta u = u_{xx} + u_{yy} = 0$.

Discussion: 23.10. - 27.10.23