Analysis III for Engineering Students Homework sheet 1, Solutions

Exercise 1:

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x, y)=5 x^{2}-3 y^{2}$.
a) Compute all partial derivatives of f up to the 3rd order.
b) Visualize the graph of f in the area $[-3,3] \times[-4,4]$.
c) A tangent plane to the graph of a differentiable function f at the point $\left(x_{0}, y_{0}\right) \in$ $D \subset \mathbb{R}^{2}$ is given by

$$
z=z(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Compute the tangent plane for the given function f at the point $\left(x_{0}, y_{0}\right)=(3,-4)$.
d) Give a parametric representation of the contour line of f that goes through the point $(3,-4)$.
e) Compute the angle α between grad $f(3,-4)$ and the tangential direction of the contour line of f at point $(3,-4)$.

Lösung:

a) $f(x, y)=5 x^{2}-3 y^{2}, \quad f_{x}(x, y)=10 x, \quad f_{y}(x, y)=-6 y$,

$$
\begin{aligned}
& f_{x x}(x, y)=10, \quad f_{x y}(x, y)=0, \quad f_{y y}(x, y)=-6, \\
& f_{x x x}(x, y)=0, \quad f_{x x y}(x, y)=0, \quad f_{x y y}(x, y)=0, \quad f_{y y y}(x, y)=0
\end{aligned}
$$

b) A MATLAB command for the area plot is:

```
ezsurf('5*x^2-3*y^2', [-3, 3, -4, 4])
```


Figure $1 f(x, y)=5 x^{2}-3 y^{2}$
c) $f(3,-4)=5 \cdot 3^{2}-3(-4)^{2}=-3, \quad f_{x}(3,-4)=30, \quad f_{y}(3,-4)=24$

Tangent plane : $\quad z=-3+30(x-3)+24(y+4)$
d) It is $f(3,-4)=-3$. Hence the contour line at the point $(3,-4)$ is given by the implicit equation

$$
-3=f(x, y(x))=5 x^{2}-3 y^{2}(x) .
$$

Solving this gives $y(x)= \pm \sqrt{5 x^{2} / 3+1}$.
Since $y(3)=-4$, only $y(x)=-\sqrt{5 x^{2} / 3+1}$ is possible.
A curve parameterizing the contour line is therefore given by

$$
\mathbf{c}(x)=\binom{x}{y(x)}=\binom{x}{-\sqrt{5 x^{2} / 3+1}} .
$$

e) $\operatorname{grad} f(3,-4)=\left(f_{x}(3,-4), f_{y}(3,-4)\right)=(30,24)$

Tangential direction of the contour line

$$
\begin{aligned}
\mathbf{c}^{\prime}(x) & =\binom{1}{-\frac{10 x}{6 \sqrt{5 x^{2} / 3+1}}} \Rightarrow \mathbf{c}^{\prime}(3)=\binom{1}{-\frac{30}{24}} \\
\cos \alpha & =\frac{\operatorname{grad} f(3,-4) \cdot \mathbf{c}^{\prime}(3)}{\|\operatorname{grad} f(3,-4)\|_{2}\left\|\mathbf{c}^{\prime}(3)\right\|_{2}}=0 \quad \Rightarrow \quad \alpha=90^{\circ}
\end{aligned}
$$

Exercise 2:

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y^{3}}{x^{4}+y^{4}} & , \text { if } & (x, y) \neq(0,0) \\
0 & , \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

a) Check if f is continuous at the origin.
b) Visualize the graph of f over the parameter domain $[-1,1] \times[-1,1]$.
c) Compute the first partial derivatives of f and
d) check whether they are continuous at the origin.

Lösung:

a) Consider the null sequence $\left(\frac{1}{k}, \frac{1}{k}\right)$ with $k \in \mathbb{N}$. It holds

$$
\lim _{k \rightarrow \infty} f\left(\frac{1}{k}, \frac{1}{k}\right)=\lim _{k \rightarrow \infty} \frac{1 / k^{4}}{2 / k^{4}}=\frac{1}{2} \neq 0 .
$$

The function f is therefore not continuous at zero.
b)

Figure 2: $\quad f(x, y)=\frac{x y^{3}}{x^{4}+y^{4}}$
c) For $(x, y) \neq(0,0)$ it holds:

$$
f_{x}(x, y)=\frac{-3 x^{4} y^{3}+y^{7}}{\left(x^{4}+y^{4}\right)^{2}}, \quad f_{y}(x, y)=\frac{3 x^{5} y^{2}-x y^{6}}{\left(x^{4}+y^{4}\right)^{2}}
$$

for $(x, y)=(0,0)$ it holds:

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0, \\
& f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
\end{aligned}
$$

d) Consider the null sequence $\left(\frac{1}{k}, \frac{1}{k}\right)$ with $k \in \mathbb{N}$ to check if the partial derivatives in the zero point are continuous.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} f_{x}\left(\frac{1}{k}, \frac{1}{k}\right)=\lim _{k \rightarrow \infty} \frac{-3 / k^{7}+1 / k^{7}}{\left(1 / k^{4}+1 / k^{4}\right)^{2}}=\lim _{k \rightarrow \infty} \frac{-k}{2}=-\infty \\
& \lim _{k \rightarrow \infty} f_{y}\left(\frac{1}{k}, \frac{1}{k}\right)=\lim _{k \rightarrow \infty} \frac{3 / k^{7}-1 / k^{7}}{\left(1 / k^{4}+1 / k^{4}\right)^{2}}=\lim _{k \rightarrow \infty} \frac{k}{2}=\infty
\end{aligned}
$$

This means that the partial derivatives are not continuous at the origin.

