Analysis III for Engineering Students

Homework sheet 1

Exercise 1:

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x, y)=5 x^{2}-3 y^{2}$.
a) Compute all partial derivatives of f up to the 3rd order.
b) Visualize the graph of f in the area $[-3,3] \times[-4,4]$.
c) A tangent plane to the graph of a differentiable function f at the point $\left(x_{0}, y_{0}\right) \in$ $D \subset \mathbb{R}^{2}$ is given by

$$
z=z(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Compute the tangent plane for the given function f at the point $\left(x_{0}, y_{0}\right)=(3,-4)$.
d) Give a parametric representation of the contour line of f that goes through the point $(3,-4)$.
e) Compute the angle α between $\operatorname{grad} f(3,-4)$ and the tangential direction of the contour line of f at point $(3,-4)$.

Exercise 2:

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y^{3}}{x^{4}+y^{4}} & , \text { if } & (x, y) \neq(0,0) \\
0 & , \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

a) Check if f is continuous at the origin.
b) Visualize the graph of f over the parameter domain $[-1,1] \times[-1,1]$.
c) Compute the first partial derivatives of f and
d) check whether they are continuous at the origin.

