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Implicit Functions 2

The solvability of the system of equations is examined

g1(x1, . . . , xn, y1, . . . , ym) = 0
...

gm(x1, . . . , xn, y1, . . . , ym) = 0 ,

briefly denoted as g(x, y) = 0, for the variable y ∈ Rm.

In this case, y would be expressible as a function of x,

In the equation g(x, y) = 0, the function f would be implicitly
contained.



Theorem on Implicit Functions 3

Let g : D → Rm be a C1 function defined on the open set
D ⊂ Rn × Rm, and consider a point (x0, y0) ∈ D where x0 ∈ Rn and
y0 ∈ Rm such that g(x0, y0) = 0.

Furthermore, assume that the following m×m submatrix of
Jg(x0, y0) is regular:

∂g

∂y
(x0, y0) :=


∂g1
∂y1

(x0, y0) · · · ∂g1
∂ym

(x0, y0)

...
...

∂gm
∂y1

(x0, y0) · · · ∂gm
∂ym

(x0, y0)


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Then there exist open sets U ⊂ Rn and V ⊂ Rm with x0 ∈ U , y0 ∈ V ,
and U × V ⊂ D, and a uniquely determined continuously
differentiable function

f : U → V

such that

y0 = f(x0) and g(x, f(x)) = 0 for all x ∈ U .

The Jacobian matrix Jf is computed for all x ∈ U
by differentiating the implicit equation g(x, f(x)) = 0
(using the chain rule), which leads to the equation system:

∂g

∂x
(x, f(x)) +

∂g

∂y
(x, f(x)) · Jf(x) = 0.



Implicit Representation of Plane Curves 5

For a C1-function g : R2 → R, the solution set given by

g(x, y) = 0

is examined.

The solvability of the equation for one of the variables is guaranteed
when gx ̸= 0 or gy ̸= 0, that is,

grad g = (gx, gy) ̸= 0
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The points (x0, y0) for which grad g(x0, y0) ̸= 0 are therefore called
regular.
In regular points, the solution set

g = 0

is described by a contour line.
In this context, a horizontal tangent is present at (x0, y0) if

g(x0, y0) = 0, gx(x0, y0) = 0, gy(x0, y0) ̸= 0

holds, and a vertical tangent for

g(x0, y0) = 0, gx(x0, y0) ̸= 0, gy(x0, y0) = 0.
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The points (x0, y0) for which grad g(x0, y0) = 0 are called singular or
stationary.

Classification of singular points of g(x, y) = 0:

(x0, y0) is an isolated point if detHg(x0, y0) > 0,

(x0, y0) is a double point if detHg(x0, y0) < 0.

(x0, y0) is a cusp point if detHg(x0, y0) = 0.
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To investigate the curve implicitly defined by the level set

f(x, y) := x3 + y3 − xy = 0,

we follow the instructions provided.
a) Determine the symmetries of the curve.
The curve is symmetric with respect to the bisector, meaning that
f(x, y) = f(y, x). We recall the reflection matrix Sα:

cos

(
2 · π
4

)
sin

(
2 · π
4

)

sin

(
2 · π
4

)
− cos

(
2 · π
4

)


︸ ︷︷ ︸
=Sπ/4

(
x
y

)
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=

(
0 1
1 0

)(
x
y

)
=

(
y
x

)
.

This reflects the point (x, y) across the line y = x.
b) Determine the points on the curve with a horizontal
tangent.
gradf(x, y) = (3x2 − y, 3y2 − x)T

Points on the curve with a horizontal tangent are obtained from the
conditions

fx(x, y) = 0 ∧ f(x, y) = 0 ∧ fy(x, y) ̸= 0
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0 = fx(x, y) = 3x2 − y ⇒ y = 3x2 ⇒

0 = f(x, 3x2) = x3 + (3x2)3 − x3x2 = x3(27x3 − 2)

⇒ x = 0 ∨ x =
21/3

3

⇒ P0 =

(
0
0

)
, P1 =

1

3

(
21/3

22/3

)
.

Only for P1 does the condition fy(P1) ̸= 0 hold.

Therefore, P1 is a point with a horizontal tangent.
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c) Determine the points on the curve with a vertical tangent.

Points on the curve with a vertical tangent are obtained from the
conditions

fy(x, y) = 0 ∧ f(x, y) = 0 ∧ fx(x, y) ̸= 0.

0 = fy(x, y) = 3y2 − x ⇒ x = 3y2 ⇒

0 = f(3y2, y) = (3y2)3 + y3 − 3y2y = y3(27y3 − 2)

⇒ y = 0 ∨ y =
21/3

3

⇒ P0 =

(
0
0

)
, P2 =

1

3

(
22/3

21/3

)
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Only for P2 does the condition fx(P2) ̸= 0 hold.

Therefore, P2 is a point with a vertical tangent.

This can also be deduced without calculation from the symmetry.

d) Classify the singular points of the curve.

For P0 = (0, 0)T , gradf(0, 0) = 0, making P0 a singular point.

Hf(x, y) =

(
6x −1
−1 6y

)
⇒ Hf(0, 0) =

(
0 −1

−1 0

)

Since detHf(0, 0) = −1 < 0, P0 is a double point.
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e) Draw the level set:

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-3
-2
-1
0
1

8x, y<

-1

-0.5

0

0.5

1
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-1

-0.5

0

0.5

1

Figure: f(x, y) = x3 + y3 − xy = c
for c = −2,−1,−0.5,−0.2,−0.025, 0, 0.05, 0.2, 0.5, 1
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The solution set

g(x, y, z) = 0

of a C1 function

g : R3 → R

describes locally a surface in (x0, y0, z0) with g(x0, y0, z0) = 0 if
grad g(x0, y0, z0) ̸= 0.

For example, if gz(x0, y0, z0) ̸= 0,
there is solvability with respect to z = z(x, y), with z0 = z(x0, y0).



Tangential plane to an implicitly represented surface 16

The parametric form of the tangent plane in R3 to the graph
(x, y, z(x, y))T is then given by

 x
y
z

 =

 x0

y0
z(x0, y0)

+(x−x0)

 1
0

zx(x0, y0)

+(y−y0)

 0
1

zy(x0, y0)

 .

According to the Implicit Function Theorem, we obtain

(gx(x0, y0, z0), gy(x0, y0, z0))+gz(x0, y0, z0) (zx(x0, y0), zy(x0, y0)) = (0, 0)
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and thus

(zx(x0, y0), zy(x0, y0)) = −
(
gx(x0, y0, z0)

gz(x0, y0, z0)
,
gy(x0, y0, z0)

gz(x0, y0, z0)

)
.

The direction vectors of the tangent plane
1
0

−gx(x0, y0, z0)

gz(x0, y0, z0)

 ,


0
1

−gy(x0, y0, z0)

gz(x0, y0, z0)


are perpendicular to

grad g(x0, y0, z0) = (gx(x0, y0, z0), gy(x0, y0, z0), gz(x0, y0, z0))
T .
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Given is the function h : R3 → R with

h(x, y, z) = z2 + y2 − x2 + 4z − 2x+ 3 .

a) Check whether the level set h(x, y, z) = c, determined by the point
(−1, 1,−2), forms a smooth surface in the vicinity of this point.

b) Solve the above equation, if necessary, for one of the variables, to
explicitly specify the surface.

c) Provide the parametric form of the tangent plane in the point
(−1, 1,−2) with respect to the surface from (a).

d) Draw the surface with the tangent plane.
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By completing the square, h can be expressed more clearly:

h(x, y, z) = z2 + y2 − x2 + 4z − 2x+ 3 = (z + 2)2 + y2 − (x+ 1)2

Since h(−1, 1,−2) = 1, the level set
turns out to be a single-sheeted hyperboloid and
is thus described by the standardized implicit equation

g(x, y, z) := (z + 2)2 + y2 − (x+ 1)2 − 1 = 0
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To determine whether g(x, y, z) = 0
forms a smooth surface in the vicinity of the point (−1, 1,−2),
the conditions of the Implicit Function Theorem must be checked:

grad g(x, y, z) = (−2(x+ 1), 2y, 2(z + 2))T ⇒

grad g(−1, 1,−2) = (0, 2, 0)T .

Thus, only gy(−1, 1,−2) = 2
forms an invertible 1× 1 submatrix.

According to the Implicit Function Theorem,
the level set forms a smooth surface,
which can be described by solving g(x, y, z) = 0
for y in a neighborhood of (−1, 1,−2),

y = f(x, z) , with f(−1,−2) = 1 and g(x, f(x, z), z) = 0.
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Solving the implicit equation g(x, y, z) = 0 yields initially

y = ±
√
1 + (x+ 1)2 − (z + 2)2.

From these two possibilities, it follows,
because y = f(−1,−2) = 1

f(x, z) =
√

1 + (x+ 1)2 − (z + 2)2 .
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In (−1, 1,−2), the surface f is approximately described by the
corresponding tangent plane T1, in vector-valued notation, this means: x

y
z

 =

 x
f(x, z)

z

 ≈

 x
T1(x, z;−1,−2)

z


To represent the tangent plane, the Jacobian matrix of f is required,
obtained by implicit differentiation of g(x, f(x, z), z) = 0 using the
chain rule:



Example: 02 (c) 23

Jf(x, z) = (fx, fz) = −(gy)
−1(gx, gz)

= − 1
2y (−2x− 2, 2z + 4)

⇒ Jf(−1,−2) = − 1
2·1(0, 0) = (0, 0) .

As a reminder:

grad g(x, y, z) = (−2(x+ 1), 2y, 2(z + 2))T
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Thus, the parametric form of the tangent plane is x
T1(x, z;−1,−2)

z



=


x

f(−1,−2) + Jf(−1,−2)

(
x+ 1
z + 2

)
z



=

 x
1
z

 =

 −1
1

−2

+ (x+ 1)

 1
0
0

+ (z + 2)

 0
0
1


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Using polar coordinates, the surface

h(x, y, z) = (z + 2)2 + y2 − (x+ 1)2 = 1

can be parameterized as follows for (r, φ) ∈ [1, R]× [0, 2π]:

y = r cosφ , z = r sinφ− 2 ⇒ p±(r, φ) =

 −1±
√
r2 − 1

r cosφ
r sinφ− 2


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Figure: without tangent plane
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Extremal Problems with Equality Constraints 29

The goal is to find the extremal values of a C1 function

f : D ⊂ Rn → R

on the following subset of the domain:

G := {x ∈ D |g(x) = 0} ⊂ D,

with a C1 function

g : D → Rm

and m < n, i.e., the extremal values must additionally satisfy the m
equations

g(x) = (g1(x), . . . , gm(x))T = 0



Theorem: (Lagrange Multiplier Rule) 30

Let x0 ∈ D be a local extremum of the function f under the
constraint g(x0) = 0, satisfying the regularity condition

Rank Jg(x0) = m

Then there exist Lagrange multipliers λ1, . . . , λm,
such that the Lagrange function

F (x) := f(x) +

m∑
i=1

λigi(x)

satisfies the necessary first-order condition:

grad F (x0) = grad f(x0) +

m∑
i=1

λigrad gi(x
0) = 0.
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If Rank Jg(x0) = m for x0 ∈ G
and grad F (x0) = 0
and HF (x0) is positive definite on

TG(x0) :=
{
y ∈ Rn |

〈
grad gi(x

0),y
〉
= 0

}
,

i.e., yT ·HF (x0) · y > 0 for y ∈ TG(x0)\{0},

then f has a strict local minimum at x0

under the constraint g(x) = 0.
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Compute the extremal values of the function

f : R2 → R , f(x, y) = x+ y

on the circle x2 + y2 = 1.
a) Under the constraint

g(x, y) := x2 + y2 − 1 = 0

determine the extremal points of the function

f(x, y) = x+ y

using the Lagrange multiplier rule.



Example: 03 (a) 33

Regularity condition:

grad g(x, y) = (2x, 2y) = (0, 0) ⇒ (x, y) = (0, 0),

i.e., only (0, 0) violates the regularity condition.

Since g(0, 0) = −1, (0, 0) is not on the circle.

All feasible points, i.e., those with g(x, y) = 0,
satisfy the regularity condition

Rank(Jg(x, y)) = 1.
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Lagrangian: F (x, y) = x+ y + λ(x2 + y2 − 1)

Lagrange Multiplier Rule:

(
∇F (x, y)
g(x, y)

)
=

 1 + 2λx
1 + 2λy

x2 + y2 − 1

 =

 0
0
0


Multiplying the first equation by y and the second by x and
subtracting both, we get

x− y = 0 ⇒ x = y.
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From the third equation, we then obtain x2 + x2 = 1

⇒ x1,2 = ± 1√
2
, y1,2 = ± 1√

2
.

Extremal candidates:

P1 =
1√
2

(
1
1

)
, P2 = − 1√

2

(
1
1

)
.
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Since the set g(x, y) = 0 describes a circle, it is compact.

Thus, the continuous function f attains a maximum and minimum on
g(x, y) = 0.

We have f(P1) =
√
2 and f(P2) = −

√
2.

So, P1 is a maximum and P2 is a minimum.
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Image: Constraint g(x, y) = x2 + y2 − 1 = 0
with level curves of the function f(x, y) = x+ y
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b) Parametrization of the circle

g(x, y) := x2 + y2 − 1 = 0

by c and then solving the extremal problem
for h(t) := f(c(t)).
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The circle is parametrized by polar coordinates(
x
y

)
=

(
cos t
sin t

)
=: c(t) , 0 ≤ t < 2π,

i.e., g(cos t, sin t) = 0.

Now, we just need to find the extrema of the function

h(t) := f(c(t)) = cos t+ sin t

h′(t) = − sin t+ cos t = 0 ⇒ tan t = 1

⇒ t1 =
π

4
, t2 =

5π

4
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h′′(t) = − cos t− sin t

⇒ h′′(t1) = −
√
2 < 0 , h′′(t2) =

√
2

Thus,
t1 = π/4 is a maximum with h(t1) =

√
2

and
t2 = 5π/4 is a minimum with h(t2) = −

√
2.
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Figure: c(t) and f(c(t)) = cos t+ sin t



Example: 04 42

For the function

f(x, y, z) = z2

compute and classify the extrema on the intersection of the cylinder
x2 + y2 = 9 with the plane y = z using the Lagrange multipliers rule.

Constraints:
g1(x, y, z) := x2 + y2 − 9 and g2(x, y, z) := y − z .

Regularization condition:

Jg(x, y, z) =

(
2x 2y 0
0 1 −1

)
has rank < 2, when the first row is equal to the zero vector,
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i.e., for the points (0, 0, z).

However, these are not feasible due to

g1(0, 0, z) = −9

So, all feasible points satisfy the regularization condition,
The Lagrange multiplier rule can be applied:

Lagrange function:

F (x, y, z) = z2 + λ1(x
2 + y2 − 9) + λ2(y − z)



Example: 04 44

Lagrange multiplier rule:

(
∇F (x, y, z)
g(x, y, z)

)
=


2λ1x

2λ1y + λ2

2z − λ2

x2 + y2 − 9
y − z

 =


0
0
0
0
0



1. Equation:
1. Case: x = 0
⇒ 0 = g1(0, y, z) = y2 − 9
⇒ y = 3 = z ∨ y = −3 = z
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Extreme candidates: P1 =

 0
3
3

 , P2 =

 0
−3
−3


2. Case: λ1 = 0
⇒ λ2 = 0 ⇒ z = 0 = y ⇒ x = 3 ∨ x = −3

Extreme candidates: P3 =

 3
0
0

 , P4 =

 −3
0
0


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The intersection of the cylinder x2 + y2 = 9 with the plane y = z
is an ellipse and therefore compact.

The continuous function f attains its absolute maximum and
minimum there.

Among the extreme candidates
are the absolute maximum and minimum.

The function values of the extreme candidates are

f(P1,2) = 9 , f(P3,4) = 0 .

So, P1,2 are absolute maxima, and P3,4 are absolute minima.
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Figure: f on the intersection of the cylinder x2 + y2 = 9 with the
plane y = z
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