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Implicit Functions 2

—

The solvability of the system of equations is examined

gl(‘rl"")xnaylw"aym) =0

gm(xla"'7x'rlay17"'7ym) = 07

briefly denoted as g(z,y) = 0, for the variable y € R™.
In this case, y would be expressible as a function of x,

In the equation g(z,y) = 0, the function f would be implicitly
contained.
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Theorem on Implicit Functions

—

Let g: D — R™ be a C! function defined on the open set
D C R" x R™, and consider a point (z%,4°) € D where 2° € R" and

y? € R™ such that g(z%,¢y") = 0.
Furthermore, assume that the following m x m submatrix of

Jg(2°,4) is regular:

0 0
oy B G )
29 (a9,40) = :
8y ) * 89 ag .
ZIM 0 0y L. 20,0
oy, ©Y) g, oY)
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Theorem on Implicit Functions 4

—

Then there exist open sets U C R® and V € R™ with 20 € U, 4 € V,
and U x V C D, and a uniquely determined continuously
differentiable function

U=V
such that

Y’ = f(z%) and g(z, f(z)) =0 forall zecU.

The Jacobian matrix Jf is computed for all z € U
by differentiating the implicit equation g(z, f(x)) =0
(using the chain rule), which leads to the equation system:

Jg dg
%(x,f(x)) + %(x,f(x)) - Jf(z) =0.
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Implicit Representation of Plane Curves 5

For a C'-function ¢ : R? — R, the solution set given by

g(x,y) =0
is examined.

The solvability of the equation for one of the variables is guaranteed
when g, # 0 or g, # 0, that is,

grad g = (gzygy) 7é 0
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Implicit Representation of Plane Curves 6

The points (xg,yo) for which grad g(xo,yo) # 0 are therefore called
regular.
In regular points, the solution set

g=0

is described by a contour line.
In this context, a horizontal tangent is present at (z,yo) if

9(55073/0) = 07 gLE(xO?yO) = 07 gy(x(b yO) 7& 0

holds, and a vertical tangent for

9(zo,y0) =0,  gz(x0,%0) #0, gy(xo,90)=0.
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Implicit Representation of Plane Curves 7

The points (xg,yo) for which grad g(zo,yo) = 0 are called singular or
stationary.

Classification of singular points of g(z,y) = 0:

(x0,y0) is an isolated point if det Hg(xo,yo) > 0,
(20,Y0) is a double point if det Hg(xq,yo) < 0.
(x0,90) is a cusp point if det Hg(zo,yo) = 0.
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Exemple: 01 8
—

To investigate the curve implicitly defined by the level set
f(xay) = $3+y3 —TY = 07

we follow the instructions provided.

a) Determine the symmetries of the curve.

The curve is symmetric with respect to the bisector, meaning that
f(z,y) = f(y,z). We recall the reflection matrix S,:

o) w62

sin 2.7 — cos 2-m
4 4

-~

:Sw/4
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Example: 01 9
P——
(Vo) (5)-(2):

This reflects the point (x,y) across the line y = x.
b) Determine the points on the curve with a horizontal
tangent.

gradf(z,y) = (32> —y,3y* —x

)T

Points on the curve with a horizontal tangent are obtained from the
conditions

fx(x7y>:0 A f(x,y):O A fy(x73/)7é0
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Example: 01 10
—
0= folr,y) =322 -y = y=322 =
0= f(z,32%) = 23 + (322)% — 2322 = 23(272% — 2)
21/3
T3

0 1 21/3
= P0:<0>,P1:3(22/3>

Only for P; does the condition f,(F;) # 0 hold.

= x=0 V =z

Therefore, P; is a point with a horizontal tangent.
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Example: 01 11
—

c) Determine the points on the curve with a vertical tangent.

Points on the curve with a vertical tangent are obtained from the
conditions

fylzy) =0 A flz,y)=0 A folz,y) #0.

Ozfy(x,y):3y2—x = =32 =
0=fBy%y) = By»)?+y* —3y%y = > (27y* - 2)

0 1 22/3
- ne(2)on-3(5)
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Example: 01 12
—

Only for P, does the condition f,(P>) # 0 hold.

Therefore, P» is a point with a vertical tangent.

This can also be deduced without calculation from the symmetry.
d) Classify the singular points of the curve.

For Py = (0,0)”, gradf(0,0) = 0, making P, a singular point.

e = (% o) = mroo=( 0 )

Since det H f(0,0) = —1 < 0, Py is a double point.
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Example: 01 13
—

e) Draw the level set:
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Example: 01 14

\-/
0.5 . a
0
-0.5
1 -0.5 0 0.5

1

Figure: flzy) =23+ —ay=c
for ¢ = —2, -1, 0.5, —0.2, —0.025,0,0.05,0.2,0.5, 1
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Tangential plane to an implicitly represented surface 15

The solution set

g(x,y,2) =0

of a C! function

g:R* >R
describes locally a surface in (zg, yo, 20) with g(xo,yo, 2z0) = 0 if
grad g(zo, Y0, 20) # 0.

For example, if gz(x()v Yo, ZO) 75 Oa
there is solvability with respect to z = z(x,y), with zo = z(x0, yo)-
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Tangential plane to an implicitly represented surface 16

The parametric form of the tangent plane in R? to the graph
(z,y,2(z,y))T is then given by

T To 1 0
y | = Yo +(r—10) 0 +(y—"0) 1
Z Z(l'm yo) Zx(l’o, yo) Zy<x07 yo)

According to the Implicit Function Theorem, we obtain

(92(0, Y0, 20), 9y(z0, Yo, 20))+9=(z0, Yo, 20) (22(Z0, Vo), 2y(z0, o)) = (0,0)
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Tangential plane to an implicitly represented surface 17

and thus

92(%0, Yo, 20) gy($07y0720)>

Zx(L05Y0), 2y\T0,Y0)) = — '
(x( ) y( )) (gz(]}o,yo,zo) gz(x()ayO?ZO)

The direction vectors of the tangent plane

1 0
0 1
~ 92(%0,90,20) |’ ~ 9y(%0, Yo, 20)

9-(Z0, Y0, 20) 9-(x0, Y0, 20)

are perpendicular to

grad g(zo, Y0, 20) = (92(20, Y0, 20), 9y (%0, Y0, 20), 9= (%0, Yo, 20))” -
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Example: 02 18
—

Given is the function h : R3 — R with

h(z,y,2) =22 +9y* —a® 4+ 42 —2x +3.

a) Check whether the level set h(x,y, z) = ¢, determined by the point
(—1,1,—2), forms a smooth surface in the vicinity of this point.

b) Solve the above equation, if necessary, for one of the variables, to
explicitly specify the surface.

c¢) Provide the parametric form of the tangent plane in the point
(—1,1,—2) with respect to the surface from (a).

d) Draw the surface with the tangent plane.
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Example: 02 (a) 19

By completing the square, h can be expressed more clearly:

Wa,y,2) =2+ —a? +4z - 204+ 3= (2+2)% +4° — (z +1)?

Since h(—1,1,—2) = 1, the level set
turns out to be a single-sheeted hyperboloid and
is thus described by the standardized implicit equation

g(@,y,2) = (2 +2° +¢* = (¢ +1)> =1=0
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Example: 02 (a) 20

To determine whether g(z,y,2) =0
forms a smooth surface in the vicinity of the point (-1, 1, —2),
the conditions of the Implicit Function Theorem must be checked:

grad g(z,y,2) = (—2(z +1),2y,2(z + 2))" =
grad g(_]-a 17 _2) = (07 27 O)T

Thus, only g,(—1,1,-2) =2
forms an invertible 1 x 1 submatrix.

According to the Implicit Function Theorem,
the level set forms a smooth surface,

which can be described by solving g(x,y,z) =0
for y in a neighborhood of (—1,1, —2),

ny(:E,Z), with f(_17_2) =1 and g(ZL‘,f(ZL‘,Z),Z):O-
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Example: 02 (b) 21

Solving the implicit equation g(z,y, z) = 0 yields initially

y=+14 (x+1)2 - (z+2)2

From these two possibilities, it follows,
because y = f(—1,-2) =1

fl@,2) = 1+ @+1)2 = (2+2)%.
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Example: 02 (c) 22

In (—1,1,-2), the surface f is approximately described by the
corresponding tangent plane 77, in vector-valued notation, this means:

X X X
Yy = f(f,Z) ~ T1($,Z;—1,—2)
z z z

To represent the tangent plane, the Jacobian matrix of f is required,
obtained by implicit differentiation of g(z, f(z, 2),z) = 0 using the
chain rule:
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Example: 02 (c)

Jf(:]:,z) = (fwfz) :_(gy)_l(gw7gz)

= —i(—zx—2,2z+4)
= Jf(-1,-2) = —3(0,0)=(0,0).

As a reminder:

grad g(:l:,y, Z) = (_2(56 + 1)7 2y, 2(2 + 2))T

23

_



Example: 02 (c) 24

Thus, the parametric form of the tangent plane is

x
Tl(xa 2 _17 _2)
z
x
z+1
— | e raren-a (01
z
T -1 1 0
= = I | +(x+1) | 0 ])+(z+2)( 0
z -2 0 1

Department of
Mathematics @ —



Example: 02 (d) 25

Using polar coordinates, the surface

hw,y,z) = (2 +2)° +y" = (@ +1)" =1
can be parameterized as follows for (r,¢) € [1, R] x [0, 27]:
12— 1

y=rcosp, z=rsinp —2 = pi(r,p) = T COS P
rsing — 2
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Example: 02 (d

2,

26

i

i

29 W,
//////////////////

without tangent plane
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Example: 02 (d i

/]
LA
/ AL i/l
27 ~',~Z

Y%,
s
2ty
WS
=2

Figure: sliced
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Example: 02 (d) 28

7 =
e
////////;/'/'/'/'/'}'.'/'/@//#ll;'&%
7 79K o7
Wiz

111754
lzligs

Wi

Figure: with tangent plane
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Extremal Problems with Equality Constraints 29

—

The goal is to find the extremal values of a C'' function

f:DCR" =R
on the following subset of the domain:
G:={xeDlg(x)=0} C D,
with a C! function
g:D—R™

and m < n, i.e., the extremal values must additionally satisfy the m
equations

g(x) = (g1(x),. .- 7gm(X))T =0
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Theorem: SLagrange Multiplier Rule) 30

Let x” € D be a local extremum of the function f under the
constraint g(x%) = 0, satisfying the regularity condition

Rank Jg(x") = m

Then there exist Lagrange multipliers A\, ..., A\,
such that the Lagrange function

m
F(x):= f(x)+ Z Aigi(x)
i=1
satisfies the necessary first-order condition:

grad F(xY) = grad f(x°) + Z Aigrad g;(x%) = 0.

=1
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Theorem: (Sufficient Second-Order Condition) 31

If Rank Jg(x%) = m for x° € G
and grad F(x%) =0
and HF (x") is positive definite on

TG(x) := {y € R"| (grad gi(x"),y) = 0} ,

ie,yl -HFx") -y >0fory € TG(x°)\{0},

then f has a strict local minimum at x°
under the constraint g(x) = 0.
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Example: 03 32
—

Compute the extremal values of the function

fIRZ SR, flzy)=z+y

on the circle 2 + 3% = 1.
a) Under the constraint

g(z,y) =a*+y° —1=0
determine the extremal points of the function

flz,y)=2+y

using the Lagrange multiplier rule.
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Example: 03 (a) 33

Regularity condition:

grad g(z,y) = (2z,2y) = (0,0) = (z,y) = (0,0),

i.e., only (0,0) violates the regularity condition.

Since ¢(0,0) = —1, (0,0) is not on the circle.

All feasible points, i.e., those with g(z,y) = 0,
satisfy the regularity condition

Rank(Jg(z,y)) = 1.
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Example: 03 (a) 34

Lagrangian:  F(z,y) =z +y + Ma? +¢* — 1)

Lagrange Multiplier Rule:

1+ 2\x 0
< VF(z,y) > | 1420 =10
9(@,y) 2?2 +y2 -1 0

Multiplying the first equation by y and the second by x and
subtracting both, we get

r—y=0 = z=uy.
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Example: 03.(a) 35

From the third equation, we then obtain 22 + 22 = 1

= T12= +

1 1
—, =+,
V2 T T

Extremal candidates:
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Example: 03.(a) 36

Since the set g(z,y) = 0 describes a circle, it is compact.

Thus, the continuous function f attains a maximum and minimum on
g(xz,y) = 0.
We have f(P1) = v2 and f(P) = —/2.

So, P; is a maximum and P, is a minimum.
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Example: 03.(a) 37

Image: Constraint g(z,y) =22 +32>—-1=0
with level curves of the function f(z,y) =z +y
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Example: 03. ( b) 38

b) Parametrization of the circle

g(z,y) =2 +y* ~1=0

by ¢ and then solving the extremal problem

for h(t) := f(c(t)).
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Example: 03. ( b) 39

The circle is parametrized by polar coordinates

<$>:<098t)::c(t), 0<t<2m,
Y sint

i.e., g(cost,sint) = 0.

Now, we just need to find the extrema of the function

h(t) := f(c(t)) = cost +sint
h'(t) = —sint +cost =0 = tant=1

s
= tl:Z’ to = —
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Example: 03. ( b) 40

h"(t) = —cost —sint

= W(t1)=-V2<0,h (t2) =V2

Thus,

t; = 7/4 is a maximum with h(t;) = V2
and

ty = 5m/4 is a minimum with h(tz) = —v/2.
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Example: 03. ( b) 41

Figure: c(t) and f(c(t)) = cost + sint
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Example: 04 42
—

For the function

flx,y,2) = 2*

compute and classify the extrema on the intersection of the cylinder
22 + y? = 9 with the plane y = z using the Lagrange multipliers rule.

Constraints:
gi(z,y,2) =2+ y* =9 and go(z,y,2)=y—z.

Regularization condition:
_(2xz 2y O
Jg(a:,y,z)— <0 1 _1>

has rank < 2, when the first row is equal to the zero vector,
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Example: 04 43
—

i.e., for the points (0,0, 2).

However, these are not feasible due to
91(0,0,2) = —9

So, all feasible points satisfy the regularization condition,
The Lagrange multiplier rule can be applied:

Lagrange function:

F(a,y,2) =22 + M(2® + 9% = 9) + Aa(y — 2)
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Example: 04 44
—

Lagrange multiplier rule:

2)\11’ 0

2My + Ao 0

(VF(x,y,Z)>: 2% — Ay B
g(ac,y,Z) $2+y2—9 0

Y —z 0

1. Equation:

1. Case: x=0

= O:gl(ovyaz):y2_9

= y=3=z V y=-3==z2

Department of
Mathematics @ —



Example: 04 45

—
0 0

Extreme candidates: P = 3 |, P= -3

3 -3

2. Case: M\ =0
= XM=0 = 2z=0=y = z=3Vzr=-3

3 -3
Extreme candidates: Ps=| 0 | ,Py= 0
0 0

Department of
Mathematics @ —



Example: 04 46
—

The intersection of the cylinder 22 4+ y? = 9 with the plane y = z
is an ellipse and therefore compact.

The continuous function f attains its absolute maximum and
minimum there.

Among the extreme candidates
are the absolute maximum and minimum.

The function values of the extreme candidates are

f(Pr2) =9, f(P54)=0.

So, Py 2 are absolute maxima, and P34 are absolute minima.
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47

N

AN
Y

f on the intersection of the cylinder 2 + % = 9 with the

Example: 04
Figure

plane y = z
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