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Taylor Expansion 2

Consider a function f: D C R® — R that is m times continuously
partially differentiable in D, where D is open and convex, and
n,m € N. Let 2° € D. Then the Taylor expansion of f at 2° up to
order m is defined as:

Zm:1< (r—x TV) f)(a:o)

7=0

.
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Taylor Polynomial 3

Alternative representation using multi-indices:
«; Number of derivatives with respect to x; ,

a:=(ag,...,a,) € N§
la] :==a1+ -+ ayp,
ali=aq!- - | olzn!,
(e
Daf - 6 ala f an 0
x] - 0xh
x® = z]! xln
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Example: 01 4
—

TQ(xﬂ Y, 2520, Y0, ZO)

= f(x0,%0, 20)

+ fo (20, Y0, 20) (x — x0) + fy(x0, Yo, 20)(y — yo) + f=(T0, Y0, 20)(z — 20)

+5 (fea (20, Y0, 20) ( — 20)? + fyy (20,90, 20) (¥ — 0)?
+ oz (@0, 90, 20) (2 — 20)* + 2 fay (@0, Y0, 20) (@ — 20) (Y — Yo)

+2 fo2 (20, Yo, 20)(x — x0)(2 — 20) +2fy=(x0, Y0, 20) (Y — yo) (2 — 20))
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Example: 01 5
—

T3(337y§$07y0)
= f(zo,90) + fz(z0,y0)(* — 20) + fy(%0,y0) (¥ — Yo)

+3 (foe (20, y0) (@ — 20)? + 2 fay (0, Y0) (@ — 20) (Y — Y0)
+ fyy (20, y0) (¥ — 40)?)
+% (fxxa:(wm yo)(CU - $0)3 + 3fx:cy(x07 yo)(l’ - xO)Z(y - yO)

+3 fayy (@0, y0) (@ — 0) (¥ — 10)? + fyyy (@0, 10) (Y — %0)?)




Exercise: 01

—

Calculate the Taylor polynomial of degree 2 for the following function
fle,y,2) =1+ z+ay+ 21— y)* + (y + 2)°

around the expansion point (0,0, 0).
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Exercise: 01

—

Solution:

flr,y,2) =1+ z2z+ay+22(1 —y)? + (y + 2)3

fy(z,y,2) =2 —22%(1 — y) + 3(y + 2)?
fo(z,y,2) =14 3(y + 2)°

f:m:(xayv Z) = 2(]‘ - y)2
Jay(z,y,2) =1 —4z(1 —y)
fxz(gﬂaya Z) =0

fyy(xv Y,2) = 227 + 6(y + 2)
fyz(,y,2) = 6(y + 2)
feoz(xyy,2) = 6(y + 2)

R

LUy

£(0,0,0) =1

f2(0,0,0) =0
£4(0,0,0) =0
£2(0,0,0) =1
fmx(oyo,o) =2
f24(0,0,0) =1
fo(0,0,0) =0
fyy(oaoao) =0
fy-(0,0,0) =0
fZZ(O,O,O) =0




Exercise: 01 8

—

= Ty(,,2,0,0,0) = £(0,0,0) + f(0,0,0)x + £,(0,0,0)y + f:(0,0,0)=
+5 (f22(0,0,0)2% + £,,,(0,0,0)y” + £2:(0,0,0)z>
+2fxy (07 07 O)xy + 2fx2(07 07 O)LUZ + 2fyz(07 0’ O)yz)

= 1+4z+ay+2?

Since the expansion point is the origin, it would have been easier to
expand the given function by multiplication and then omit terms
beyond the quadratic ones:

flx,y,2) =1+ 2z +ay +2® — 2yz® + 2% + 43 + 322 + 3y2? + 23
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Exercise: 02 9

—

Find the 3rd-degree Taylor polynomial of the following function

f(z,y) = zsin(z +y)

at the point (0, g)
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Exercise: 02

—

Solution:

f(z,y) = zsin(z +y)
fo(z,y) = sin(z + y) + x cos(x + y)
fy(2,y) = zcos(z + y)

fox(z,y) = 2cos(x + y) — zsin(z + y)

fay(x,y) = cos(z +y) — wsin(z +y)
Jyy(x,y) = —zsin(z + y)

f:L':E:B (x?
fa::vy(xa
fzyygl':

fyyy (2,

Y)

Y)
Y)
Y)

—3sin(z +y) — x cos(z + y)
—2sin(x +y) — z cos(z + y)
—sin(z +y) — x cos(x + y)
—zcos(z +y)

10

= f(0,5)=0

= fx (07 %) =1

= fy(0,3) =0

= [fuy (0,5) =0

= fyy (0,5) =0

= fmx:p (07 77/2) =-3
= 4y (0,7m/2) = =2
= .fzyy (Oa 7T/2) =-1




Exercise: 02 11

—

= Ts(x,y;0,7/2) = [f(0,7/2) + fo(0,7/2)x + f(0,7/2)(y — 7/2)

+3 (Fow(0,7/2)3% + 25, (0, 7/2)2(y — 7/2)
+ [y (0,7/2)(y — 7/2)?)
+ 1 (frew(0,7/2)2° + 3 fray (0, 7/2)2%(y — 7/2)

+3fayy(0,7/2)2(y — 7/2)% + fyyy (0, 7/2)(y — 7/2

= v—2°/2—2%(y—n/2) —a(y —7/2)%/2




Taylor’s Theorem 12

—

If fis (m+ 1) times continuously partially differentiable, then for the
Taylor expansion

f(x) = Tin(z; w()) + Rm($§$0)
the following Lagrange remainder formula holds,
with € :== 20+ O(z —2°) and 0 < © < 1

(=200 " 1) 0

Ry (x5 20) = m+ 1)

Alternatively, in terms of multi-indices:

Rnwat)= Y PTG a0y

!
(e
|a|l=m+1
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Example: 02
—

R3(.’L’,y;x0,y0) =

13

a1 (farae (61, &) (2 — 20)*
+4 faay (€1, &2)(z = 20)° (¥ — y0)
+6 faayy (€1, €2) (2 — 20)*(y — 0)?
4 fayyy (1, &) (& — 20)(y — yo)?

+fyyyy (€1, 62) (Y — y0)4)




Exercise: 03 14

—

Calculate the 2nd-degree Taylor Polynomial for the point of
development (z,yo) = (0,0) for the following function

h(z,y) = cos(a® +y?)

and estimate the error that arises when using 75 instead of h in the
rectangle [0, 7/4] x [0,7/4], from above.
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Exercise: 03 15

—

Solution:

h(z,y) = cos(z? + 3?) = h(0,0)=1
he(x,y) = —2xsin(a? + y?) = hz(0,0)=0
hy($ay) =2y Sin(ac2 + y2) = hy(oao) =0
hoe(z,y) = —2sin(x? + y?) — 422 cos(2? + y?) =  hu(0,0) =0
hay(z,y) = —4ay cos(x? + y?) = hgy(0,0) =0
hyy(x,y) = —2sin(z? + y?) — 4y® cos(z? + y?) = hyy(0,0) =0

= T2($7y;070) = h(O ) &7(7 )x"‘hy(()?o)y
+%( 2(0,0)2 +hwy(070)$y+hyy(070)y2)
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Exercise: 03 16

—

MATLAB command for surface plot:

ezsurf(’cos(x? + y?), [-2.5,2.5, —2.5,2.5])

cos (x2+y?)

ol
’ "0 '

, "0 m'o'% S

// I'o: "'
///'m
"Ofu' "‘
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Exercise: 03 17

—

For the error estimation, the third derivatives are required:

howe(x,y) = —12zcos(x® + y?) + 823 sin(x? + ?)
haay(z,y) = —4dycos(z? + y?) + 8z%ysin(z? + y )
hayy(z,y) = —4zcos(z? + y?) + 8y wsin(a? + y 2)
hyyy(z,y) = —12ycos(z? 4+ y?) + 8y> sin(z? + y?).

The error estimation for any (z,y) € [0,7/4] x [0,7/4] implies, with
6 €]0, 1[, any

(£1>£2) = (07 0) + 9(.1:, y) E]Oa 7T/4[X]077T/4[
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Exercise: 03 18

—

Using the triangle inequality, we obtain:

|h(:l?,y) - T2(337y; 070)‘ = |R2($7y;070)|
= % ‘hmm(fl, 52)553 + 3hmy(§1a 52)3329 + 3hfcyy(§1a fZ)w?JQ + hyyy (&1, fQ)yg‘
< % (|hxmm(£17£2)| : ’l'|3 +3 |hx:py(£17£2)| : |:v2y|

+3 [Py (€1, €)1 - [2?] + |hyyy (61, 62)] - 1)) -

Each of the four terms can now be individually upper-bounded.
Using |sint| < 1 and |cost| < 1, we have:

| (&1, 62)] - ’x‘g

| —12¢1 cos(&F + &3) + 8¢5 sin(&F + )| - |«
(| — 12&1] - [cos(&F + &3)| + |8€F| - | sin(&F + &3)|) - |=[?

(255 (1)) ()

IA

IN
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Exercise: 03 19

I
Similarly,
b1 e 5 (1 5. (2)) ()
3 hayy(€1,&)] - |zy?| <3 <4 ' % + <Z)3> (%)3

8.
3 3
|hyyy (€1, &2)] - |y°] < <12 —+8- %) > (%) Overall, we have:

AN

™

3 s T\ 3
ha.y) = To(a,y; 0,0)| < 55 <48 464 <Z) > = 5.5476...

The maximum error occurs at x =y =

2

2. ) — 1] = 0.669252...

42
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TN A3

m™ T m™ T
n(Ge) =T (5 530.0) | = cos




Extrema of Functions in Multiple Variables 20

—

Let’s consider a function f,

f:DcR* - R
x = f(z)

where x = (1, ,Zp).
Definition:
For 2° € D, we define:
» f has a global maximum at 20 if for all z € D, f(z) < f(2).
» f has a local maximum at z° if there exists € > 0 such that for
all z € D with ||z — 2°|| < e, f(z) < f(20).
» In 1) and 2), if the inequality f(z) < f(z") can be replaced by
f(z) < f(2°) for x # 2, it is a strict maximum at z°.
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Extrema of Functions in Multiple Variables 21

—

» If f(x) > f(2°) in 1) and 2), and f(z) > f(2°) in ¢), then it is a
minimum at 2°.

» f has an extremum at 20 if it is either a maximum or minimum.

» f has a stationary point at 2° € D if grad f(2") = 0.
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Theorem: First-Order Necessary Condition 22

—

Let f be a C! function in D°, and 2° € D° is a local extremum,
then

gradf(z") = 0.
For a twice-partially differentiable function,
foro (@) faia, (@)

Hf(x) = : :
fxnxl (:U) T fxnxn (I)

represents the Hessian matrix of f.
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Theorem: Second-Order Necessary Condition 23

—

If f is a C? function and 2° € DO is a stationary point, then:

1. If z° € D is a local minimum,
then H f(2°) is positive semidefinite.

2. If 2 € D is a local maximum,
then H f(2°) is negative semidefinite.
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Theorem: Second-Order Sufficient Condition 24

—

If f is a C? function and 2° € DO is a stationary point, then:
1. If Hf(z) is positive definite,
then 20 is a strict local minimum.

2. If Hf(2") is negative definite,
then 20 is a strict local maximum.

3. If Hf(2") is indefinite,
then 20 is a saddle point.
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Example: 02 25
—

Compute all stationary points of the following function and classify
them:

2 2

fla,y) = (a® —y?)e™™ ¥
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Example: 02 26
—

grad f(z,y) = e 7V (20(1 — 2% + ¢?), 2y(—1 — 22 + )T = (0,0)7
To compute the stationary points, we set f,(z,y) = 0 and consider all
cases.

Case 1: =0

= 0= f,(0,y) = e ¥ 2y(—1+y?)

= y=0 y=1 y=-1

= stationary points:

Plz(0,0), P2:(071)7 P3:(07_1)

Case 2: 1 — 2?4+ 9> =0= 22 =1+

= 0= fy(z,y) = e*(1+92)*y22y(—1 —(1+yH) +v?)
= —41/6_1_2?/2

=y=0 = z=1 z=-1

= stationary points: P; = (1,0), P5;=(—1,0)
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Example: 02 27

—
Hf(x,y) =
go-zt—y? (1 5% + 22t + y? — 222y 2zy(z? — %)
2zy(x? — y?) —1+ 5y% — 2y* — 22 + 22%?

Hf(0,0) = < (2) _g ) is indefinite

= P, =(0,0) is a saddle point.

Hf(0,+1) =2e! < (2) (2) ) is positive definite
= Pp3 = (0,%£1) are minima.

Hf(+1,0) = —2¢7! < (2) g ) is negative definite

= Py5 = (£1,0) are maxima.
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Example: 02 28

[T77
o,
0.0 e
i v o
o
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Example: 03 29
—

Compute all stationary points of the following function and classify
them:

flz,y) =y(y* —3)
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Example: 03 30
—

grad f(z,y) = (0,3y* —=3)T = (0,0)7 = y==+1,z€R
The stationary points lie on the lines
Pi(z) = (z,1) and Py(z) = (x,—1).

i = (g g )

Hf(z,1) = 8 g > is positive semi definite

= Pi(z) = (z,1) are not local maxima.
0

= Py(x) = (z,—1) are not local minima.

f is independent of x,

i.e., for fixed y = ¢, f(x,c) = constant for all z € R.

is negative semidefinite
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Example: 03 31
—

The extrema are thus the ones of g(y) = y(y?> — 3),
i.e., all points on the line P;(z) = (x,1) are local minima and for
Py(x) = (z,—1) one obtains local maxima.
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Example: 04 32
—

Compute all stationary points of the following function and classify
them:

f(z,y) = sin(a? +4%)

Department of
Mathematics @ —



Example: 04 33
—

Solution: grad f(x,y) = 2cos(z? + y?)(x,y)T = (0,0)T
The stationary points are thus given by (0,0) and all points P, for
which 22 4+ y? = 7/2 + n7 with n € N.
H f(x, y) =
2 cos(z? + y?) — 4x? sin(2? + y?) —4zysin(z? + y?)
( —4xysin(z? + y?) 2 cos(z? + y?) — 4y? sin(z? + y?) )

Hf(0,0) = < (2) (2) > is positive definite

= (0,0) is a minimum.

[ —4a®sin(2?® +y?) —daysin(z? + y?)
Hf(P)= ( —4xy sin(x2 + yz) —4y? sin(a:2 + y2)
is semi definite, as det H f(P) = 0.
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Example: 04 34
—

We classify differently:

For points P on the circles 2 + y? = 7/2 + n7

we have sin(7/2 + nm) = (—1)".

Therefore, for even n there are maxima, and for odd n there are
minima on these circles.

Figure :  f(z,y) = sin(z? + y?)
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Exercise: 04 35

—

Given the function

f(z,y) = 8z* — 1022y + 3y°.

1. Calculate all stationary points of f

2. Try to apply the sufficient condition for the classification of
stationary points.

3. Show that f has a local minimum at the origin along every line
through the origin.

4. Does f also have a minimum at the origin along every parabola
y = ax? with a € R?
5. Plot the function, for example, using the MATLAB routines

‘ezsurf’ and ’ezcontour’.
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Exercise: 04. 1 1 ) 36

Solution:

grad f(x,y) = (4a(822 — by), —1022% + 6y)T =0

1. Case: =0

= 6y=0 = stationary point (xo,y0) = (0,0).

2. Case: 822 -5y =0

= y=82%/5 = —100>+6-82?/5=0 = 2 =0 The only
stationary point is thus (0,0).
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Exercise: 04. 1 2 ) 37

9622 — 20y —20x 0 0.
Hf(x,y)z( 90z 6 ) = Hf(O,O):(O 6)18
positive semi definite,
and the sufficient criterion is not applicable.
The necessary condition of order 2 leaves the possibilities of being a
minimum or a saddle point for the stationary point

(z0,%0) = (0,0).
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Exercise: 04. 1 3 ) 38

On the line z = 0, the function is described by

g(y) = f(0,y) = 3y>.

For y = 0, ¢ has a strict local minimum. All other origin lines can be
represented by y = ax with ¢ € R and the function is then described
by

h(z) == f(z,azx) = 82* — 10a2® + 3a’x>

For a = 0, h is minimal at x = 0. For @ # 0, a minimum is also
obtained at z = 0 because

B (z) = 322% — 30a2® + 6a’xz = K (0) =0

and
h'(z) = 962* — 60ax + 6a®> = h"(0) =6a> > 0.
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Exercise: 04. 1 4 ) 39

On the parabola y = az?, the function takes the form
p(z) == f(z,az?) = 82* — 10ax* + 3a%2*
= 2*(3a% — 10a + 8) = x*(a — 2)(3a — 4). This yields

p(r) = 423(a—2)3a—4) = p(0) = 0
p'(r) = 122%(a—2)(3a—4) = p’(0) = 0
p"(x) = 2dx(a—2)3a—4) = p"(0) = 0
P(z) =  24(a—2)(3a—4) = p"(0) = 24(a—2)(3a—4).

For a €]4/3,2], p"”"(0) < 0
and there is a strict maximum at z = 0.
For a ¢ [4/3,2], p""(0) > 0
and there is a strict minimum at x = 0.
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Exercise: 04. 1 4 ) 40

Thus, at the stationary point (0,0), it is a saddle point. If it were
known that

fla,y) = 2y — 32%)% — (y — 2*)?

, then on the origin parabola
2y — 322 =0

at x = 0, an immediate maximum
and on
Yy — z2=0

at z = 0, an immediate minimum would have been recognized and
then it would have been immediately inferred to be a saddle point.
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Exercise: 04. 41

2y-3x -y

i
ll,/l" X
P D,

I
il
w,,,,a, ,/,,:, o "
0
a,,, ':,;» 04 m
.
ll,’i‘

ezsurf('8*x* — 10 * 22 x y + 3 x 9%, [~1.5,1.5, —2.5,6])
Figure: f(z,y) = 82* — 1022y + 3y
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Exercise: 04.£ 5% ) 42

(2y-3:-(y-4)°

25 -
2 08 06 04 02 0 02 04 06 08 1
x

ezcontour("8*x* — 10 * 22 x y + 3 * y?/,[-1,1, 2.5, 3])
Figure: f(z,y) = 82* — 1022y + 3y?
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