Analysis III: Auditorium Exercise-03

For Engineering Students

Md Tanvir Hassan University of Hamburg

November 13, 2023

Consider two functions

$$f, g: D \subset \mathbb{R}^n \to \mathbb{R}^m$$
,

where D is open, and $x_0 \in D$. If f and g are differentiable at x_0 , then the linear combination $\alpha f + \beta g$ with $\alpha, \beta \in \mathbb{R}$ is also differentiable at x_0 .

For the Jacobian matrix of the linear combination, we have

$$J(\alpha f + \beta g)(x_0) = \alpha J f(x_0) + \beta J g(x_0)$$

Let's consider a function $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ and a function $g: E \subset \mathbb{R}^m \to \mathbb{R}^k$.

For $f(D) \subset E$, the composition of f and g is defined as

$$g \circ f : D \to \mathbb{R}^k$$
, $(g \circ f)(x) := g(f(x))$

If f is totally differentiable at x^0 and g is totally differentiable at $y^0 := f(x^0)$, then $g \circ f$ is totally differentiable at x^0 and the following holds

$$J(g \circ f)(x^0) = Jg(f(x^0)) \cdot Jf(x^0)$$

Let,

$$w: \mathbb{R}^2 \stackrel{\Phi}{\to} \mathbb{R}^2 \stackrel{\tilde{w}}{\to} \mathbb{R}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} \mapsto \tilde{w}(u,v) = w(x,y)$$

$$Jw = (w_x, w_y) = J(\tilde{w} \circ \Phi) = J\tilde{w} \cdot J\Phi$$
$$= (\tilde{w}_u, \tilde{w}_v) \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = (\tilde{w}_u u_x + \tilde{w}_v v_x, \tilde{w}_u u_y + \tilde{w}_v v_y)$$

Calculate the Jacobi matrix using the chain rule and directly:

$$f: \mathbb{R}^2 \xrightarrow{f_1} \mathbb{R}^2 \xrightarrow{f_2} \mathbb{R}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} r = ye^x \\ s = x^3 \end{pmatrix} \mapsto r\cos(s^2)$$

$$Jf_{1}(x,y) = \begin{pmatrix} ye^{x} & e^{x} \\ 3x^{2} & 0 \end{pmatrix},$$

$$Jf_{2}(r,s) = \begin{pmatrix} \cos(s^{2}), & -2rs\sin(s^{2}) \end{pmatrix}$$

$$Jf(x,y) = J(f_{2} \circ f_{1})(x,y) = Jf_{2}(f_{1}(x,y)) \cdot Jf_{1}(x,y)$$

$$= \begin{pmatrix} \cos((x^{3})^{2}), & -2ye^{x}x^{3}\sin((x^{3})^{2}) \end{pmatrix} \cdot \begin{pmatrix} ye^{x} & e^{x} \\ 3x^{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} ye^{x}\cos(x^{6}) - 6x^{5}ye^{x}\sin(x^{6}), & e^{x}\cos(x^{6}) \end{pmatrix}$$

$$f_2(f_1(x,y)) = f_2(r(x,y)), s(x,y)) = f(x,y) = ye^x \cos(x^6)$$

$$\Rightarrow Jf(x,y) = \left(ye^x \cos(x^6) - 6x^5 ye^x \sin(x^6), e^x \cos(x^6) \right)$$

Calculate the Jacobi matrix using the chain rule and directly:

$$g: \mathbb{R}^3 \stackrel{g_1}{\to} \mathbb{R}^2$$

$$\mathbb{R}^2$$

$$\xrightarrow{g_2}$$

$$\mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} u = \sin(2yz) \\ v = x^2 \end{pmatrix} \mapsto \begin{pmatrix} 2v - 3u \\ e^{2u+v} \\ u^3v \end{pmatrix}.$$

Definition:

Let Φ be a C^1 function, and $U, V \subset \mathbb{R}^n$ be open sets, with

$$\Phi: U \to V \quad \text{and} \quad u \mapsto \Phi(u)$$

Here,
$$u = (u_1, u_2, \dots, u_n)^T$$
 and $\Phi(u) = (\Phi_1(u), \Phi_2(u), \dots, \Phi_n(u))^T$.

The Jacobian matrix $J\Phi(u^0)$ is assumed to be regular for every $u^0 \in U$, and there exists a C^1 inverse function $\Phi^{-1}: V \to U$. Then, $x = \Phi(u)$ is referred to as a **coordinate transformation** from the coordinates u to the coordinates x.

Let
$$u = (r, \varphi)^T$$

with $0 < r$ and $-\pi < \varphi < \pi$

$$x = \begin{pmatrix} x \\ y \end{pmatrix} = \Phi(r, \varphi) = \begin{pmatrix} r\cos(\varphi) \\ r\sin(\varphi) \end{pmatrix}$$

The equation for circle is:

$$x^2 + y^2 = R^2$$

describes the boundary K of a circular disk with a radius of R and a center at (0,0).

K can be represented using Polar coordinates with R=r.

The equation for ellipse is:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

describes the boundary E of an ellipse with the semi-axes a and b and a center at (0,0).

E can be represented as $(x, y) = (a\cos(\varphi), b\sin(\varphi))$.

In cylindrical coordinates, a point is represented as $u=(r,\varphi,z)^T$ with $0< r, -\pi<\varphi<\pi,z\in\mathbb{R}$

$$x = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi(r, \varphi, z) = \begin{pmatrix} r \cos(\varphi) \\ r \sin(\varphi) \\ z \end{pmatrix}$$

In spherical coordinates, a point is represented as $u = (r, \varphi, \theta)^T$ with $0 < r, -\pi < \varphi < \pi, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$

$$x = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi(r, \varphi, \theta) = \begin{pmatrix} r \cos(\varphi) \cos(\theta) \\ r \sin(\varphi) \cos(\theta) \\ r \sin(\theta) \end{pmatrix}$$

The inequality

$$x^2 + y^2 + z^2 \le R^2$$

describes a **Solid Sphere** K with a radius of R and a center at (0,0,0).

With $0 \le r \le R$, K can be represented using spherical coordinates.

$$x^2 + y^2 = 3$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Circle: Radius $r = \sqrt{3}$, Center (0,0)

Representation using Polar Coordinates with $-\pi \leq \varphi < \pi$

$$(x,y)=(\sqrt{3}\cos(\varphi),\sqrt{3}\sin(\varphi))$$

Figure: Circle $x^2 + y^2 = 3$

$$4x^2 + 9y^2 = 36$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Semi-axes a = 3 and b = 2, Center (0,0)Ellipse: Representation using Polar Coordinates with $-\pi \leq \varphi < \pi$

$$(x,y) = (3\cos(\varphi), 2\sin(\varphi))$$

Figure: Ellipse $\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$

$$16x^2 + 3y^2 + 6y + 3 = 48$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Through completing the square, we obtain

$$16x^{2} + 3y^{2} + 6y + 3 = 16x^{2} + 3(y+1)^{2} = 48$$

$$\Leftrightarrow \frac{x^{2}}{(\sqrt{3})^{2}} + \frac{(y+1)^{2}}{4^{2}} = 1$$

Ellipse: Semi-axes $a=\sqrt{3}$ and b=4, Center (0,-1)Representation using Polar Coordinates with $-\pi \leq \varphi < \pi$

$$(x,y) = (\sqrt{3}\cos(\varphi), 4\sin(\varphi) - 1)$$

Figure:

$$x^2 - 6x + 9 + y^2 = 25$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Through completing the square, we obtain

$$x^{2} - 6x + 9 + y^{2} = (x - 3)^{2} + y^{2} = 5^{2}.$$

Circle: Radius r = 5, Center (3,0)

Representation using Polar Coordinates with $-\pi < \varphi < \pi$

$$(x,y) = (5\cos(\varphi) + 3, 5\sin(\varphi))$$

Figure: Circle $(x-3)^2 + y^2 = 5^2$

Draw the solution sets of the following region in \mathbb{R}^3 and represent them using cylindrical coordinates. $x^2 + y^2 \leq 4$ with $x \leq 0$ and $1 \leq z \leq 3$

Figure: Half cylinder Z

Cylindrical Coordinates for Z: $u = (r, \varphi, z)^T$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r\cos(\varphi) \\ r\sin(\varphi) \\ z \end{pmatrix} = (r, \varphi, z)$$

with
$$0 \le r \le 2$$
, $\frac{\pi}{2} \le \varphi \le \frac{3\pi}{2}$, $1 \le z \le 3$

Draw the solution sets of the following region in \mathbb{R}^3 and represent them using spherical coordinates. $x^2 + y^2 + z^2 \le 16$, $0 \le y$

Figure: Half sphere H

Spherical Coordinates for H: $u = (r, \varphi, \theta)^T$

$$x = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi(r, \varphi, \theta) = \begin{pmatrix} r \cos(\varphi) \cos(\theta) \\ r \sin(\varphi) \cos(\theta) \\ r \sin(\theta) \end{pmatrix}$$

with
$$0 \le r \le 4$$
, $0 \le \varphi \le \pi$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

Consider the coordinate transformation

$$\Phi(x,y) = \left(\begin{array}{c} u(x,y) \\ v(x,y) \end{array}\right) = \left(\begin{array}{c} x-y \\ x+y \end{array}\right)$$

with $(x,y) \in Q := [-1,1] \times [-1,1]$.

- ightharpoonup Calculate $J\Phi(x,y)$ and $\det(J\Phi(x,y))$.
- Calculate $\Phi^{-1}(u, v), J\Phi^{-1}(u, v), \det(J\Phi^{-1}(u, v)).$
- ightharpoonup Draw Q and $\Phi(Q)$

$$\Phi(x,y) = \left(\begin{array}{c} u(x,y) \\ v(x,y) \end{array}\right) = \left(\begin{array}{c} x-y \\ x+y \end{array}\right) = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) ,$$

This is a linear transformation, more precisely, it's a rotation and scaling by 45° with a factor of $\sqrt{2}$, as:

$$\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) = \sqrt{2} \left(\begin{array}{cc} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{array}\right) = \sqrt{2} \left(\begin{array}{cc} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{array}\right).$$

$$J\Phi(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$
$$\det(J\Phi(x,y)) = 2$$

$$\Phi^{-1}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \end{pmatrix}$$

$$= \begin{pmatrix} (u+v)/2 \\ (v-u)/2 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$

$$J\Phi^{-1}(u,v) = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix} = (J\Phi)^{-1},$$

 $\det(J\Phi^{-1}(u,v)) = 1/2$

Figure: $\Phi(Q)$

THANK YOU

