Analysis III: Auditorium Exercise-03 For Engineering Students

Md Tanvir Hassan
University of Hamburg

November 13, 2023

Consider two functions

$$
f, g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m},
$$

where D is open, and $x_{0} \in D$. If f and g are differentiable at x_{0}, then the linear combination $\alpha f+\beta g$ with $\alpha, \beta \in \mathbb{R}$ is also differentiable at x_{0}.

For the Jacobian matrix of the linear combination, we have

$$
J(\alpha f+\beta g)\left(x_{0}\right)=\alpha J f\left(x_{0}\right)+\beta J g\left(x_{0}\right)
$$

Let's consider a function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and a function $g: E \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$.

For $f(D) \subset E$, the composition of f and g is defined as

$$
g \circ f: D \rightarrow \mathbb{R}^{k}, \quad(g \circ f)(x):=g(f(x))
$$

If f is totally differentiable at x^{0} and g is totally differentiable at $y^{0}:=f\left(x^{0}\right)$, then $g \circ f$ is totally differentiable at x^{0} and the following holds

$$
J(g \circ f)\left(x^{0}\right)=J g\left(f\left(x^{0}\right)\right) \cdot J f\left(x^{0}\right)
$$

Let,

$$
\begin{aligned}
& w: \mathbb{R}^{2} \\
& \xrightarrow{\Phi}
\end{aligned} \mathbb{R}^{2} \quad \stackrel{\tilde{w}}{ } \quad \mathbb{R} .
$$

$$
J w=\left(w_{x}, w_{y}\right)=J(\tilde{w} \circ \Phi)=J \tilde{w} \cdot J \Phi
$$

$$
=\left(\tilde{w}_{u}, \tilde{w}_{v}\right)\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\tilde{w}_{u} u_{x}+\tilde{w}_{v} v_{x}, \tilde{w}_{u} u_{y}+\tilde{w}_{v} v_{y}\right)
$$

Example 02

Calculate the Jacobi matrix using the chain rule and directly:

$$
\begin{aligned}
& f: \mathbb{R}^{2} \quad \xrightarrow{f_{1}} \quad \mathbb{R}^{2} \quad \xrightarrow{f_{2}} \quad \mathbb{R} \\
& \binom{x}{y} \mapsto\binom{r=y e^{x}}{s=x^{3}} \mapsto \quad r \cos \left(s^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
J f_{1}(x, y) & =\left(\begin{array}{cc}
y e^{x} & e^{x} \\
3 x^{2} & 0
\end{array}\right) \\
J f_{2}(r, s) & =\left(\begin{array}{cc}
\cos \left(s^{2}\right), & \left.-2 r s \sin \left(s^{2}\right)\right) \\
J f(x, y) & =J\left(f_{2} \circ f_{1}\right)(x, y)=J f_{2}\left(f_{1}(x, y)\right) \cdot J f_{1}(x, y) \\
& =\left(\cos \left(\left(x^{3}\right)^{2}\right), \quad-2 y e^{x} x^{3} \sin \left(\left(x^{3}\right)^{2}\right)\right) \cdot\left(\begin{array}{cc}
y e^{x} & e^{x} \\
3 x^{2} & 0
\end{array}\right) \\
& =\left(y e^{x} \cos \left(x^{6}\right)-6 x^{5} y e^{x} \sin \left(x^{6}\right), \quad e^{x} \cos \left(x^{6}\right)\right)
\end{array}, l\right.
\end{aligned}
$$

$$
\begin{array}{r}
\left.f_{2}\left(f_{1}(x, y)\right)=f_{2}(r(x, y)), s(x, y)\right)=f(x, y)=y e^{x} \cos \left(x^{6}\right) \\
\Rightarrow \quad J f(x, y)=\left(y e^{x} \cos \left(x^{6}\right)-6 x^{5} y e^{x} \sin \left(x^{6}\right), \quad e^{x} \cos \left(x^{6}\right)\right)
\end{array}
$$

Calculate the Jacobi matrix using the chain rule and directly:

$$
\begin{aligned}
& g: \mathbb{R}^{3} \quad \stackrel{g_{1}}{\rightarrow} \\
& \left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \mapsto\left(\begin{array}{l}
\mathbb{R}^{2} \\
u=\sin (2 y z) \\
v=x^{2}
\end{array}\right) \mapsto\left(\begin{array}{c}
2 v-3 u \\
e^{2 u+v} \\
u^{3} v
\end{array}\right) .
\end{aligned}
$$

Definition:

Let Φ be a C^{1} function, and $U, V \subset \mathbb{R}^{n}$ be open sets, with

$$
\Phi: U \rightarrow V \quad \text { and } \quad u \mapsto \Phi(u)
$$

Here, $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)^{T}$ and $\Phi(u)=\left(\Phi_{1}(u), \Phi_{2}(u), \cdots, \Phi_{n}(u)\right)^{T}$.
The Jacobian matrix $J \Phi\left(u^{0}\right)$ is assumed to be regular for every $u^{0} \in U$, and there exists a C^{1} inverse function $\Phi^{-1}: V \rightarrow U$. Then, $x=\Phi(u)$ is referred to as a coordinate transformation from the coordinates u to the coordinates x.

Polar Coordinates

Let $u=(r, \varphi)^{T}$
with $0<r$ and $-\pi<\varphi<\pi$

$$
x=\binom{x}{y}=\Phi(r, \varphi)=\binom{r \cos (\varphi)}{r \sin (\varphi)}
$$

The equation for circle is:

$$
x^{2}+y^{2}=R^{2}
$$

describes the boundary K of a circular disk with a radius of R and a center at $(0,0)$.
K can be represented using Polar coordinates with $R=r$.

The equation for ellipse is:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

describes the boundary E of an ellipse with the semi-axes a and b and a center at $(0,0)$.
E can be represented as $(x, y)=(a \cos (\varphi), b \sin (\varphi))$.

In cylindrical coordinates, a point is represented as $u=(r, \varphi, z)^{T}$ with $0<r,-\pi<\varphi<\pi, z \in \mathbb{R}$

$$
x=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\Phi(r, \varphi, z)=\left(\begin{array}{c}
r \cos (\varphi) \\
r \sin (\varphi) \\
z
\end{array}\right)
$$

In spherical coordinates, a point is represented as $u=(r, \varphi, \theta)^{T}$ with $0<r,-\pi<\varphi<\pi,-\frac{\pi}{2}<\theta<\frac{\pi}{2}$

$$
x=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\Phi(r, \varphi, \theta)=\left(\begin{array}{c}
r \cos (\varphi) \cos (\theta) \\
r \sin (\varphi) \cos (\theta) \\
r \sin (\theta)
\end{array}\right)
$$

The inequality

$$
x^{2}+y^{2}+z^{2} \leq R^{2}
$$

describes a Solid Sphere K with a radius of R and a center at $(0,0,0)$.
With $0 \leq r \leq R, K$ can be represented using spherical coordinates.

Example 03

$$
x^{2}+y^{2}=3
$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Example 03

Solution:

Circle: \quad Radius $r=\sqrt{3}, \quad$ Center $(0,0)$
Representation using Polar Coordinates with $\quad-\pi \leq \varphi<\pi$

$$
(x, y)=(\sqrt{3} \cos (\varphi), \sqrt{3} \sin (\varphi))
$$

Figure: Circle $x^{2}+y^{2}=3$

Example 04

$$
4 x^{2}+9 y^{2}=36
$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Ellipse: \quad Semi-axes $\quad a=3$ and $b=2, \quad$ Center $(0,0)$ Representation using Polar Coordinates with $\quad-\pi \leq \varphi<\pi$

$$
(x, y)=(3 \cos (\varphi), 2 \sin (\varphi))
$$

Figure: Ellipse $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$

$$
16 x^{2}+3 y^{2}+6 y+3=48
$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Through completing the square, we obtain

$$
\begin{gathered}
16 x^{2}+3 y^{2}+6 y+3=16 x^{2}+3(y+1)^{2}=48 \\
\Leftrightarrow \quad \frac{x^{2}}{(\sqrt{3})^{2}}+\frac{(y+1)^{2}}{4^{2}}=1
\end{gathered}
$$

Ellipse: \quad Semi-axes $a=\sqrt{3}$ and $b=4$, Center $(0,-1)$ Representation using Polar Coordinates with $\quad-\pi \leq \varphi<\pi$

$$
(x, y)=(\sqrt{3} \cos (\varphi), 4 \sin (\varphi)-1)
$$

$$
x^{2}-6 x+9+y^{2}=25
$$

Draw the circle or ellipse and represent the solution sets of the equation using polar coordinates, and display the (x, y) coordinates.

Solution:

Through completing the square, we obtain
$x^{2}-6 x+9+y^{2}=(x-3)^{2}+y^{2}=5^{2}$.
Circle: Radius $r=5$, Center $(3,0)$

Representation using Polar Coordinates with $\quad-\pi \leq \varphi<\pi$

$$
(x, y)=(5 \cos (\varphi)+3,5 \sin (\varphi))
$$

Figure: Circle $(x-3)^{2}+y^{2}=5^{2}$

Draw the solution sets of the following region in \mathbb{R}^{3} and represent them using cylindrical coordinates. $x^{2}+y^{2} \leq 4$ with $x \leq 0$ and $1 \leq z \leq 3$

Figure: Half cylinder Z

Cylindrical Coordinates for $Z: \quad u=(r, \varphi, z)^{T}$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
r \cos (\varphi) \\
r \sin (\varphi) \\
z
\end{array}\right)=(r, \varphi, z)
$$

with $\quad 0 \leq r \leq 2, \quad \frac{\pi}{2} \leq \varphi \leq \frac{3 \pi}{2}, \quad 1 \leq z \leq 3$

Draw the solution sets of the following region in \mathbb{R}^{3} and represent them using spherical coordinates. $x^{2}+y^{2}+z^{2} \leq 16,0 \leq y$

Figure: Half sphere H

Spherical Coordinates for $H: \quad u=(r, \varphi, \theta)^{T}$

$$
x=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\Phi(r, \varphi, \theta)=\left(\begin{array}{c}
r \cos (\varphi) \cos (\theta) \\
r \sin (\varphi) \cos (\theta) \\
r \sin (\theta)
\end{array}\right)
$$

with $\quad 0 \leq r \leq 4, \quad 0 \leq \varphi \leq \pi, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

Consider the coordinate transformation

$$
\Phi(x, y)=\binom{u(x, y)}{v(x, y)}=\binom{x-y}{x+y}
$$

with $(x, y) \in Q:=[-1,1] \times[-1,1]$.

- Calculate $J \Phi(x, y)$ and $\operatorname{det}(J \Phi(x, y))$.
- Calculate $\Phi^{-1}(u, v), J \Phi^{-1}(u, v), \operatorname{det}\left(J \Phi^{-1}(u, v)\right)$.
- Draw Q and $\Phi(Q)$

$$
\Phi(x, y)=\binom{u(x, y)}{v(x, y)}=\binom{x-y}{x+y}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y},
$$

This is a linear transformation, more precisely, it's a rotation and scaling by 45° with a factor of $\sqrt{2}$, as:
$\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)=\sqrt{2}\left(\begin{array}{rr}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)=\sqrt{2}\left(\begin{array}{rr}\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) \\ \sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right)\end{array}\right)$.
$J \Phi(x, y)=\left(\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$,
$\operatorname{det}(J \Phi(x, y))=2$

$$
\begin{aligned}
\Phi^{-1}(u, v) & =\binom{x(u, v)}{y(u, v)} \\
& =\binom{(u+v) / 2}{(v-u) / 2}=\left(\begin{array}{rr}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)\binom{u}{v} \\
J \Phi^{-1}(u, v) & =\left(\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right) \\
& =\left(\begin{array}{rr}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)=(J \Phi)^{-1}
\end{aligned}
$$

$\operatorname{det}\left(J \Phi^{-1}(u, v)\right)=1 / 2$

Figure: $\quad Q$

Figure: $\Phi(Q)$

THANK YOU

目

