# Analysis III: Auditorium Exercise-02 For Engineering Students 

Md Tanvir Hassan<br>University of Hamburg

October 30, 2023

- Vector Field
- Jacobian Matrix
- Streamlines
- Directional derivative
- Vector Operators

Let $D$ be open and $D \subset \mathbb{R}^{n}$, a function $f: D \rightarrow \mathbb{R}$ is called a vector field on $D$, if every function $f_{i}(x)$ of $f=\left(f_{1}, \ldots, f_{n}\right)^{T}$ is a $C^{\mathcal{K}}{ }_{-}$ function, then f is called $c^{\mathcal{K}}$-vector field.


$$
f(x, y)=\binom{f_{1}(x, y)}{f_{2}(x, y)}=\binom{x}{y}
$$

Find the vector field in the $x y$-plane

$$
f(x, y)=\binom{f_{1}(x, y)}{f_{2}(x, y)}=\binom{-y}{x}
$$

## Example



Let $f: D \rightarrow \mathbb{R}^{m}, D \subset \mathbb{R}^{n}, x=\left(x_{1}, \ldots . ., x_{n}\right)^{T} \in D$,

$$
f(x)=\left(\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots ., x_{n}\right) \\
f_{2}\left(x_{1}, \ldots ., x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots ., x_{n}\right)
\end{array}\right)
$$

Then the Jacobian Matrix is $m \times n$ matrix $J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(x)$ :

$$
J f(x)=\left(\begin{array}{c}
\operatorname{grad} f_{1}(x) \\
\operatorname{grad} f_{2}(x) \\
\vdots \\
\operatorname{grad} f_{m}(x)
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}}(x) \ldots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x) \ldots & \frac{\partial f_{2}}{\partial x_{n}}(x) \\
\vdots & & \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \frac{\partial f_{m}}{\partial x_{2}}(x) \ldots & \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right)
$$

## Determinant of a Matrix

A matrix is given

$$
M=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
$$

The determinant is

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]\right)=2
$$

- If $m=n$ the determinant of the Jacobian is knownn as the Jacobian determinant of $f$
- The Jacobian is used when making a change of variables and a coordinate transformation.

Compute the Jacobian matrix and the Jacobian determinant of the following vector function:

$$
\begin{array}{ll}
f(x, y)=\binom{f_{1}(x, y)}{f_{2}(x, y)}=\binom{x+x^{2} y}{5 x+\sin (y)} \\
J(x, y)=\left(\begin{array}{cc}
\partial f_{1} / \partial x & \partial f_{1} / \partial y \\
\partial f_{2} / \partial x & 2 f_{2} / y
\end{array}\right)=\left(\begin{array}{cc}
1+2 x y & x^{2} \\
5 & \cos y
\end{array}\right)
\end{array}
$$

$$
\operatorname{det}\left|\begin{array}{cc}
1+2 x y & x^{2} \\
5 & \cos (y)
\end{array}\right|=(1+2 x y) \cos (y)-5 x^{2}=\cos (y)+2 x y \cos (y)-5 x^{2}
$$

Compute the Jacobian matrix of the following vector function:

$$
\begin{array}{r}
f(x, y, z)=\binom{f_{1}(x, y, z)}{f_{2}(x, y, z)}=\binom{x e^{y}+x^{2} z}{e^{x^{2}+2 y^{2}}} \\
J(x, y, z)=\left(\begin{array}{lll}
\frac{\partial \hbar}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{L}}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
e^{y}+2 x z & x e^{y} & x^{2} \\
2 x e^{x+2 y^{n}} & 4 y e^{x^{n}+2 j^{n}} & 0
\end{array}\right)
\end{array}
$$

Let $f: D \rightarrow \mathbb{R}^{m}$ be differentiable in $x^{0} \in D, D$ is open. Let $g: E \rightarrow \mathbb{R}^{k}$ be differentiable in $y^{0}=f\left(x^{0} \in E \subset \mathbb{R}^{m}\right), E$ is open. Then $g \circ f$ is differentiable in $x^{0}$.
For the differentials it holds

$$
\mathrm{d}(g \circ f)\left(x^{0}\right)=\mathrm{d} g\left(y^{0}\right) \circ \mathrm{d} f\left(x^{0}\right)
$$

and analogously for the Jacobian matrix

$$
\mathrm{J}(g \circ f)\left(x^{0}\right)=\mathrm{J} g\left(y^{0}\right) \circ \mathrm{J} f\left(x^{0}\right)
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a vector valued function of one variable defined as follows

$$
\begin{array}{cl}
f(x, y, z)=e^{z} \cos (2 x) \sin (3 y) \\
g(t)=(x(t), y(t), z(t))=\left(2 t, t^{2}, t^{3}\right) \\
\text { ivative of the composition } f \circ g . & \begin{array}{l}
\frac{\partial f}{\partial z}=2 e^{z} \sin (2 x) \sin (3 y) \\
\frac{\partial f}{\partial y}=3 e^{2} \cos (2 x) \cos (3 y) \\
\frac{\partial f}{\partial z}=e^{z} \cos (2 x) \sin (3 y)
\end{array},
\end{array}
$$

Compute the derivative of the composition $f \circ g$.

$$
\begin{aligned}
& \frac{\partial}{\partial t}(f \circ g)=\operatorname{grad} f(x(t), y(t), z(t)) \cdot g^{\prime}(t) \\
& =2 e^{2} \sin (2 x) \sin (3 y) \cdot 2+3 e^{t} \cos (2 n) \cos (3 y) \cdot 2 t+ \\
& \begin{array}{c}
2 e^{t^{3}} \sin (2 \cdot 2 t) \sin \left(3 \cdot t^{2}\right)+\begin{array}{c}
e^{2} \cos (2 x) \sin (3 y) \cdot 3^{2} \\
e e^{2} \cos (2 \cdot 2 t) \cos \left(3 \cdot t^{2}\right) \cdot 2 t+e^{t^{3}} \\
e
\end{array} \quad \begin{array}{c}
\sin \left(3 \cdot t^{2}\right) \cdot 3 t^{2}
\end{array} \quad \begin{array}{c}
d t
\end{array} \frac{d z(t)}{d t}=3 t^{2}
\end{array}
\end{aligned}
$$

$$
\text { Let } f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\text { and } g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

Compute the derivative of the composition $f \circ g$.

$$
\begin{aligned}
& \frac{\partial}{\partial t}(f \circ g)(s, t)=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}=\ldots-\ldots \\
& \frac{\partial}{\partial s}(f \circ g)(s, t)=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}=\ldots-\ldots
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=x^{2} y+x y^{2} \\
& \frac{\partial f}{2 n}=2 n y+y^{2} \\
& \frac{\partial f}{\partial y}=x^{n}+2 n y \\
& g(s, t)=\binom{x(s, t)}{y(s, t)}=\binom{2 s+t}{s-2 t} \quad \frac{2 s}{\partial s}=\binom{2 x / \partial s}{2 y / s}=\binom{2}{1} \\
& \frac{\partial y}{\partial t}=\binom{2 x / 2 t}{2 y / 2 t}=\binom{9}{-2}
\end{aligned}
$$

Let $u=\left(u_{1}(x, y), u_{2}(x, y)\right)^{T}$ be a velocity field of the two dimensional flow. The streamlines associated the flow $u$ are the solution of the system of the differential equations

$$
\left\{\begin{array}{l}
\dot{x}=u_{1} \\
\dot{y}=u_{2}
\end{array}\right.
$$

or the differential equation

$$
y^{\prime}(x)=\frac{u_{2}(x, y)}{u_{1}(x, y)}
$$

Calculate the streamline passing through a point $\left(x_{0}, y_{0}\right)^{T}$ for the stagnation point flow

$$
u=\binom{u_{1}(x, y)}{u_{2}(x, y)}=\binom{x}{-y}
$$

we have to solve the diff. eq n $y^{\prime}(n)=\frac{u_{2}(x, y)}{u_{1}\left(x_{1} y\right)} \Rightarrow \frac{d y}{d x}=\frac{u_{2}(x, y)}{u_{1}(x, y)} \Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
now have to integrate to find the streamline, $\int \frac{d x}{x}=-\int \frac{\partial y}{y} \Rightarrow \ln |x|=-\ln |y|+C$
wring $\left(x_{0}, y_{0}\right)^{\top}$ to find the constant $A \rightarrow\left|x_{0}\right| y_{-1} \mid=A$

$$
\begin{aligned}
& \Rightarrow e^{|n| x / / y \mid}=e^{c}=A \rightarrow \text { ramatinnt } \\
& \Rightarrow|x||y|=A
\end{aligned}
$$

$N_{1} w_{1}|x||y|=\left|x_{0}\right|\left|y_{0}\right| \Rightarrow|y|=\frac{\left|x_{0}\right|\left|y_{0}\right|}{\mid x_{1}} \rightarrow e_{2} n$ of sineconine.

Calculate the streamline passing through a point $(0,0)^{T}$ for the stagnation point flow

$$
\begin{gathered}
u=\binom{u_{1}(x, y)}{u_{2}(x, y)}=\binom{x}{x(x-1)(y+1)} \\
\frac{d y}{d x}=\frac{x(x-1)(y+1)}{x}=(x-1)(y+1) \\
\Rightarrow \frac{d y}{y+1}=\int(x-1) d x \Rightarrow \ln |y+1|+c_{1}=\frac{x^{n}}{2}-x+C_{2} \\
\Rightarrow \ln |y+1|=\frac{x^{2}}{2}-x+\underbrace{c_{2}-c_{1}} C \quad(\text { constant) }
\end{gathered}
$$

for $A$ we use $(0,0)^{\dagger}$

$$
A=\frac{1^{y+1}}{e^{y_{2}-x}}=1
$$

$$
\Rightarrow e^{\ln \mid y+1]}=e^{x y / 2-x} \cdot e^{2}
$$

$$
\Rightarrow|y+1|=e^{2^{2} / 2-x} \cdot A y^{c} \text { combat }
$$

S. $1 y+1 \mid=e^{x^{y / 2}-x} \Rightarrow y=e^{x / 2-x}-1 \rightarrow$ Department of
steaming

## Directional Derivative

Let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}^{n}, D$ is open , $x^{0} \in D, v \in \mathbb{R}^{n} \backslash 0$ a vector. Then

$$
D_{v} f\left(x^{0}\right):=\lim _{t \rightarrow 0^{+}} \frac{f\left(x_{0}+t v\right)-f\left(x^{0}\right)}{t}
$$

is called the directional derivative of $f(x)$ in the direction $v$.

Calculate by definition the directional derivative of the function $f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{1} x_{2}$ at a point $\left(x_{1}^{0}, x_{2}^{0}\right)$ in the direction

$$
v=\left(v_{1}, v_{2}\right)^{T} .
$$

$D_{V} f\left(x^{0}\right)=\lim _{t \rightarrow 0^{+}} \frac{f\left(x^{0}+t v\right)-f\left(x^{0}\right)}{t}$ substituting tan function $f\left(x_{1}, x_{0}\right)$ into tie definition.

$$
\begin{aligned}
\partial f\left(x^{0}\right)=\lim _{t \rightarrow 0^{+}} \frac{\left(2\left(x_{1}+t v_{1}\right)+\left(22_{i}+t v_{1}\right)\left(x_{2}^{0}+t v_{2}\right)\right)-\left(2 x_{1}^{0}+x_{1}^{0} x_{2}^{0}\right)}{t} & =2 v_{1}+x_{1}^{0} v_{2}+v_{1} x_{2}^{0}+\lim _{t \rightarrow 0} \frac{x^{0} v_{1} v_{2}}{t} \\
& =v_{1}+x_{1}^{0} v_{2}+v_{1} x_{2}^{0}+\lim _{t \rightarrow 0} 0 t_{1}^{0}\left(v_{1} v_{2}\right) \\
& =2 v_{1}+x_{1}^{0} v_{2}+x_{2}^{0} v_{1}
\end{aligned}
$$

Let $f(x, y)=x^{2} y$. Now compute

- $\operatorname{grad} f(3,2)$
- the derivative of $f$ in the direction of $(1,2)$ at the point $(3,2)$

$$
\begin{aligned}
& \operatorname{grad} f(3,2)=\left.\left(2 x y, x^{2}\right)\right|_{(3,2)}=(12,9) \\
& D_{v} f(x, y)=\text { grad } f(x, y) \cdot V
\end{aligned}
$$

$$
\begin{aligned}
& D_{v} f(x, y)=\operatorname{grad} f(n, y) \cdot v \\
& D_{(1,2)} f(3,2)=\operatorname{grad} f(3,2) \cdot v \quad \text { unit vector, } \quad v=\frac{(1,2)}{\|(1,2) \mid}=\frac{[1,2)}{\sqrt{1^{2}+2^{2}}}=\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)
\end{aligned}
$$

$$
=(12,9)\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}=\frac{12}{r_{5}}+\frac{18}{\sqrt{5}}=\frac{30}{\sqrt{5}}
$$

Let $f(x, y)=x^{2} y$. Now compute

- $\operatorname{grad} f(3,2)$
- the derivative of $f$ in the direction of $(2,1)$ at the point $(3,2)$

Compute $D_{v} f(x, y)$ for $f(x, y)=\cos \left(\frac{x}{y}\right)$ in the direction $v=(3,-4)$

$$
\begin{aligned}
\operatorname{Drf}_{\checkmark}(n, y) & =\operatorname{gral} f(n, y) \cdot v \\
& =\left(-\frac{1}{y} \sin \left(\frac{y}{y}\right), \frac{3}{y}-\sin \left(\frac{y}{y}\right)\right) \cdot\binom{3 / 5}{-4 / 5} \\
& =-\frac{3}{5 y} \sin \left(\frac{x}{y}\right)-\frac{42}{5 y^{2}} \sin \left(\frac{x}{y}\right)
\end{aligned}
$$

$\left\lvert\, \quad g_{n} \operatorname{ad} f(n, y)=\left(-\frac{1}{y} \sin \left(\frac{x}{y}\right), \frac{x}{y}, \sin \left(\frac{x}{y}\right)\right)\right.$
unit vector: $v=\frac{(3,-4)}{\sqrt{3^{2}+(-1)^{2}}}=\left(\frac{3}{5}, \frac{-4}{5}\right)$

Compute $D_{v} f(3,-1,0)$ for $f(x, y, z)=4 x-y^{2} e^{3 x z}$ in the direction $v=(-1,4,2)$. Is it a direction of descent or ascent?

$$
\nabla_{v} f(3,-1,0)=\operatorname{grad} f(3,-1,0) \cdot v
$$

$$
\begin{gathered}
\text { grad } f(3,-1,0)=\left(4-3 z y^{2} e^{3 x z},-2 y e^{3 x z}\right. \\
\left.-3 x y^{2} e^{3 x z}\right)\left.\right|_{(3,-1,8)} \\
=
\end{gathered}
$$

if $\operatorname{Dr} f>0 \rightarrow a \operatorname{sen} t$
Dr $f<0 \rightarrow$ descent

For the vectorfield $=\left(f_{1}, \ldots, f_{n}\right)^{T}$ in $\mathbb{R}^{n}$ and $x=\left(x_{1}, \ldots . x_{n}\right)$ then the divergence of the vector field is

$$
\operatorname{div} f:=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}
$$

- The divergence of the vector field $f$ is a scalar field.

Compute the divergence of the vector field:

- $\vec{f}=x \hat{i}+y \hat{j}$
- $\vec{f}=-x \hat{i}-y \hat{j}$
- $\vec{f}=-y \hat{i}+x \hat{j}$


## Rotation

Let $f$ be the in $\mathbb{R}^{3}$ and the rotation of $f$ or the curl of $f$ :

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right), \quad \operatorname{rot} f:=\left(\begin{array}{c}
\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}} \\
\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}} \\
\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}
\end{array}\right)
$$

- The curl of a vector field $\vec{f}$ is indeed a vector field. The curl operation takes a vector field as input and produces another vector field as its output.

Compute the divergence of the vector field:

- $\vec{f}=x \hat{i}+y \hat{j}$
- $\vec{f}=-y \hat{i}+x \hat{j}$

Compute the div $(f)$ and $\operatorname{rot}(f)$ for $f(x, y, z)=\left(\begin{array}{c}x^{2} y \\ z^{3}-3 x \\ 4 y^{2}\end{array}\right) \xrightarrow[\rightarrow f_{3}]{\rightarrow f_{1}}$

$$
\begin{aligned}
& \operatorname{div} f=\frac{\partial f_{1}}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f_{3}}{\partial z}=2 x y+0+0=2 x y \quad \text { (diff }=0 . f \text { ) } \\
& r_{0}+f=\nabla \times f=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial_{x}} & \frac{\partial}{\lambda_{y}} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f 3
\end{array}\right|=i\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
j_{2} & f_{3}
\end{array}\right|-j\left|\begin{array}{ll}
\frac{\partial}{\partial z} & \frac{\partial}{\partial_{x}} \\
j_{3} & f_{1}
\end{array}\right|+k\left|\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
f_{1} & f_{2}
\end{array}\right| \\
& =i\left(\frac{\partial f_{3}}{\partial g}-\frac{\partial f_{2}}{\partial z}\right)-j\left(\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial x}\right)+k\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) \\
& =i\left(s y-3 z^{2}\right)-j(0-0)+k\left(3-2^{2}\right)=\left(\begin{array}{c}
8 y-3 z^{2} \\
0 \\
3-a^{2}
\end{array}\right)
\end{aligned}
$$

Exercise 13


$$
\operatorname{rof} f=\nabla \times f=\left(\begin{array}{cc}
\frac{\partial f_{3}}{\partial y}-\frac{\partial f_{2}}{\partial z} \\
\frac{\partial f_{1}}{\partial z}-\frac{\partial f_{3}}{\partial z} \\
\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{y}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
0- & y \\
2 x^{2} & -0 \\
0 & -0
\end{array}\right)=\left(\begin{array}{c}
-y \\
2 x^{2} \\
0
\end{array}\right)
$$

Compute the Jacobian matrix of the following vector function:

$$
f(x, y)=\left(\begin{array}{c}
f_{1}(x, y) \\
f_{2}(x, y) \\
f_{3}(x, y)
\end{array}\right)=\left(\begin{array}{c}
\sin (y) \\
x^{3}+\cos (x) \\
x^{2} y^{2}
\end{array}\right)
$$

$\rightarrow$ follow exercise 2 .

## THANK YOU

目

