Analysis III: Auditorium Exercise-01 For Engineering Students

Md Tanvir Hassan
University of Hamburg

October 16, 2023

1. Mon 13:30-14:30 bi-weekly (23.10, 06.11., 20.11., 04.12., 18.12., 15.01., 29.01.)
2. Location: SBC 3-E, Room 4.012
3. Appointment by email: md.tanvir.hassan@uni-hamburg.de

Definition : Let D is open and $D \subset \mathbb{R}^{n}$, a function $f: D \rightarrow \mathbb{R}$, $x^{0} \in D$. The function f is called Partially differentiable in x^{0} with respect to x_{i}, if the limit

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right):=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t e_{i}\right)-f\left(x^{0}\right)}{t}
$$

exists. Here e_{i} denotes the i-th unit vector. And this limit is called partial derivative of f with respect to x_{i} at x^{0}.

Partial Derivatives

If at every point x^{0} the partial derivative with respect to every veriable $x_{i}, i=1, \ldots, n$ exists and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a C^{1}-function.

Are these functions partially differentiable? Compute the partial derivatives of the given functions.

- $f_{1}(x, y)=4 x+2 y^{2}$
- $f_{2}(x, y)=4 x^{4}-2 y^{2}$
- $f_{3}(x, y)=4 x^{4}-|y|$

Compute the partial derivatives of the given function g :

$$
g(x, y)=\sin (2 x+3)+e^{3 y}
$$

Check if the function f is continuous at the origin.

$$
f(x, y)=4 x+2 y^{2}
$$

Definition : Let D is open and $D \subset \mathbb{R}^{n}$, a function $f: D \rightarrow \mathbb{R}$ is partial differentiable then the gradient is

$$
\operatorname{gradf}\left(x_{0}\right)=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)
$$

The Symbolic vector

$$
\nabla:=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)^{T}
$$

and denote as a nabla-operator.
Thus we obtain the column vector

$$
\nabla f\left(x_{0}\right)=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)^{T}
$$

Compute the gradient of the following functions:

- $f(x, y)=2 x^{2}+3 y^{2}$
- $g(x, y)=2 x^{2}+3 x^{2} y^{2}$
- $h(x, y)=2 \cos (x)+3 e^{y}$

Compute the gradient of the function f :

$$
f(x, y, z)=2 x^{2} y^{4}+3 x y^{2} z^{4}
$$

Definition : The equation of a tangent plane to a graph of a differentiable function f at the point $\left(x_{0}, y_{0}\right) \in D \subset \mathbb{R}^{2}$ is

$$
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Parameters from the function graph can be choosen

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x_{0} \\
y_{0} \\
f\left(x_{0}, y_{0}\right)
\end{array}\right)+\left(x-x_{0}\right)\left(\begin{array}{c}
1 \\
0 \\
f_{x}\left(x_{0}, y_{0}\right)
\end{array}\right)+\left(y-y_{0}\right)\left(\begin{array}{c}
0 \\
1 \\
f_{y}\left(x_{0}, y_{0}\right)
\end{array}\right) .
$$

A differentiable function is $z=f(x, y)=3+2 x^{2}+y^{2}$ and at the point $\left(x_{0}, y_{0}\right)=(3,2)$ we want to compute the tangent plane.

Compute the tangent plane of the surface $z=x^{2}+y^{2}$ at the point $\left(x_{0}, y_{0}, z_{0}\right):=(1,2,5)$.
Hints: $T(x, y):=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$

Definition : A contour line, which is also referred to as a level curve, represents the intersection of a specific surface with a horizontal plane defined by the equation $z=c$. When these contour lines are depicted together on the $x y$-plane, it forms a representation known as a contour map or contour plot, offering valuable insights into the characteristics of the surface.

Contour maps of mountains:

Contour map for $f(x, y)=2 x^{2}+3 y^{2}-5$

1. Contour maps provide valuable information about the behavior of the function in the $x y$ plane.
2. Contour lines represent regions of equal function values.
3. $f=5$ the center of the contour map.
4. As you move away from the center, the values of f increase.

3D surface plot of $z=f(x, y)=2 X^{2}+3 Y^{2}-5$

Department of
Mathematics

Plot contour lines of the given function

$$
z=f(x, y)=3+x+y^{2}
$$

$\mathrm{x}=\operatorname{linspace}(-10,10,100)$;
$\mathrm{y}=$ linspace (-10, 10, 100);
$[X, Y]=\operatorname{meshgrid}(\mathrm{x}, \mathrm{y})$;
$\mathrm{F}=\mathrm{X}+\mathrm{Y} .{ }^{2}+3$;
contour(X, Y, F, 30);
xlabel('x');
ylabel('y');
title('name');

Determine the direction of the gradient on the contour lines of the given function f and

$$
z=f(x, y)=3+x+y^{2}
$$

Higher-order Derivatives

Compute the second order derivative of the function f :

$$
f(x, y, z)=2 x^{2} y^{4}+3 x y^{2} z^{4}
$$

Exercise: 6

Compute the second order derivative of the function f :

$$
f(x, y, z)=2 x y^{2} \sin (z)
$$

Compute the partial derivatives of the given functions :

- $(a x+b y)^{2}$
- $e^{a x+b y}$
- $\frac{\sin (a x)}{b y}$

Compute the Gradient of the given functions :

$$
f(x, y)=x^{4} \ln y-y^{5} e^{x}
$$

Compute the third-order derivative $f_{x y y}$ of the given functions :

$$
f(x, y)=\ln \left(x y^{2}+2 y\right)
$$

THANK YOU

目

